Halcon算子翻译——set_fuzzy_measure

名称

set_fuzzy_measure - 指定一个模糊函数。

用法

set_fuzzy_measure( : : MeasureHandle, SetType, Function : )

描述

  set_fuzzy_measure指定在函数中传递的模糊函数。 指定的模糊函数使得fuzzy_measure_pos和fuzzy_measure_pairs / fuzzy_measure_pairing能够评估和选择检测到的候选边缘。 为此,不同边缘特征的加权特征可以由一个函数来定义。 这种特定的特征被称为模糊集合。 模糊集没有指定的功能意味着不使用此功能进行最终边缘评估。 将第二个模糊函数设置意味着放弃第一个定义的函数并将其替换为第二个函数。 以前定义的模糊函数可以通过reset_fuzzy_measure完全丢弃。

  可以定义由SetType参数选择的五种不同模糊集合类型的函数,一个集合的子类型是互斥的:

  'contrast'将使用模糊函数来评估候选边缘的幅度。 在提取边缘对时,通过两边的模糊对比度评分的几何平均来获得模糊评估。

    'position'的模糊函数评估由gen_measure_arc或gen_measure_rectangle2生成的每个候选边缘到度量对象的参考点的距离。 参考点位于开始位置,而“position_center”或“position_end”将参考点设置为一维灰度值轮廓的中间或末端。 如果模糊位置评估取决于物体沿着轮廓的位置,‘position_first_edge’/‘position_last_edge’将参考点设置在第一个/最后提取的边缘的位置处。 当提取边缘对时,边缘对的位置被两边的模糊位置分数的几何平均值所引用。

  与'position'相似,'position_pair'计算每个边对与measure对象的参考点之间的距离。 一个边缘对的位置由两个边缘之间的中心点定义。 对象的参考点可以分别由'position_pair_center','position_pair_end'和'position_first_pair','position_last_pair'来设置。 与'position'不同的是,该设置仅由fuzzy_measure_pairs / fuzzy_measure_pairing使用。

  'size'表示一个模糊设置,该设置为以像素为单位评估一对的两条边的规定距离。 该集合仅由fuzzy_measure_pairs / fuzzy_measure_pairing使用。 通过以相应的模糊值0.0终止函数来指定大小的上限将加快fuzzy_measure_pairs / fuzzy_measure_pairing,因为不需要考虑所有可能的对。

  'gray'设置模糊函数来对一对的两个边缘之间的平均投影灰度值进行加权。 该集合仅由fuzzy_measure_pairs / fuzzy_measure_pairing使用。

  一个模糊函数被定义为一个分段线性函数,由至少两对值按升序按x值排序。 x值表示边缘特征,并且必须位于设置类型的参数空间内,即,在'contrast'和'gray'特征的情况下,例如在0.0≤x≤255.0的范围内的byte图像。 'size'x必须满足0.0 <= x,而 'position'x可以是任何实数。 模糊函数的y值表示相应特征值的权重,并且必须满足0.0 <= y <= 1.0。 在由最小和最大x值定义的函数间隔之外,间隔边界外的y值仍连续。 这样的模糊函数可以由create_funct_1d_pairs生成。

  如果定义了多个集合,则fuzzy_measure_pos / fuzzy_measure_pairs / fuzzy_measure_pairing通过每个集合的权重的几何中间产生整体模糊加权。

并行

●  多线程类型:可重入(与非独占算子并行运行)。

●  多线程范围:全局(可以从任何线程调用)。

●  不并行处理。

该算子修改以下输入参数的状态:

  MeasureHandle

如果没有全局同步,此参数的值可能不会在多个线程之间共享。

参数

SetType (input_control)   string → (string)
  模糊集合的选择。: 'contrast'
  List of values: 'contrast', 'gray', 'position', 'position_center', 'position_end', 'position_first_edge', 'position_first_pair', 'position_last_edge', 'position_last_pair',   'position_pair_center', 'position_pair_end', 'size'


Function (input_control)    function_1d → (real / integer)
  模糊函数。

示例(HDevelop)

* how to use a fuzzy function
* ...
gen_measure_rectangle2 (50, 100, 0, 200, 100, 512, 512, 'nearest_neighbor', \
                        MeasureHandle)
* create a generalized fuzzy function to evaluate edge pairs
* * (30% uncertainty).
create_funct_1d_pairs ([0.7,1.0,1.3], [0.0,1.0,0.0], SizeFunction)
* and transform it to expected size of 13.45 pixels
transform_funct_1d (SizeFunction, [1.0,0.0,13.45,0.0], TransformedFunction)
set_fuzzy_measure (MeasureHandle, 'size', SizeFunction)

fuzzy_measure_pairs (Image, MeasureHandle, 1, 30, 0.5, 'all', RowEdgeFirst, \
                     ColumnEdgeFirst, AmplitudeFirst, RowEdgeSecond, \
                     ColumnEdgeSecond, AmplitudeSecond, RowEdgeCenter, \
                     ColumnEdgeCenter, FuzzyScore, IntraDistance, \
                     InterDistance)

 

Possible Predecessors

gen_measure_arc, gen_measure_rectangle2, create_funct_1d_pairs, transform_funct_1d

Possible Successors

fuzzy_measure_pos, fuzzy_measure_pairs

Alternatives

set_fuzzy_measure_norm_pair

See also

reset_fuzzy_measure

模块

1D Metrology

HDevelop例程

inspect_bottle_label_360_degree.hdev     将一个瓶子的四个图像组合成拼接图像,显示瓶子的展开标签
fuzzy_measure_switch.hdev            用一个模糊度量对象确定一个开关引脚的宽度和距离

转载于:https://www.cnblogs.com/xhiong/p/set_fuzzy_measure.html

set_origin_pose是Halcon中用来设置相机姿态的算子之一。在机器视觉领域,相机姿态是指相机在三维世界中的位置和方向,是进行立体视觉及三维重建等操作的基石之一。相机姿态的描述主要有两种方法:欧拉角和四元数。 在Halcon中,set_origin_pose算子所设置的相机姿态采用的是欧拉角的方式进行描述。其参数有六个,分别为x、y、z方向上的旋转角度和相机的平移向量(tx、ty、tz),这六个参数可以通过平移向量和旋转角度来描述相机在三维世界坐标系中的位置和方向。set_origin_pose算子可用于将相机从一个位置移到另一个位置,以及旋转相机的方向。 使用set_origin_pose算子需要先获取当前相机姿态,然后设置新的姿态。一般情况下,获取当前相机姿态使用的是get_cam_param算子,该算子返回相机的内外参数,包括焦距、畸变系数、旋转角度及平移向量等。根据当前姿态和设置的姿态,可以确定相机需要旋转的角度和平移的距离,最终将相机移动到新的位置和方向。 set_origin_pose算子主要用于相机标定、三维重建、机器人导航等方面。通过调整相机的姿态,可以使图像对应于不同位置和方向的三维场景,实现更精确的视觉测量和准确定位。在实际应用中,需要结合其他算子,如gen_cam_proj_matrix2算子、hom_mat3d_to_pose算子等,才能完成更复杂的相机姿态设置和获取任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值