线性代数的动态观-线性变换(三)

先谈谈非奇异矩阵下的特征值和特征向量,在前面已经提过相似变换了,相似矩阵说的是同一个相似变换在不同基下的表现形式,别看最后与具体的向量无关,但实际上相似矩阵是与向量对象、以及基紧密关联的。而线性变换是与具体的基无关的,因为它变换的永远都是坐标向量,所以在研究线性变换矩阵的特征向量和特征值时可以在所有的基下进行讨论!

当把矩阵当作作用力的动态观来看时,它会使向量(切记这个向量实际是坐标向量)发生运动从而产生位置的变化,特征向量是指矩阵对特征向量的作用仅仅只会产生向量的拉伸与向量的方向颠倒(如从正向变成反向),即A.x=f8f5844590c2bc3ec662c6c5083c8f598cb.jpg.x,拉伸的大小就是特征值。

非奇异矩阵的特征向量是可有可无的,比如二维平面上的旋转矩阵就没有特征向量,从而也没有特征值;假如有特征值和特征向量每个特征值对应的特征向量可以是1个,也可以是多个。特征向量可以构成特征空间以及特征子空间,当特征向量个数为矩阵的秩时可以构成当前矩阵的基向量。小于秩的个数时不能构成基,但是它们可以构成当前向量空间的特征子空间,当特征值对应的特征向量是1个时,特征子空间就是一条直线,为多个时,特征子空间就是二维平面、三维立方或者高维空间。由于每个特征子空间中的所有向量都是特征向量,都有相同的特征值因此为了方便讨论一般都取单位向量!

对于非奇异矩阵且可对角化的矩阵A即48943978cdc015287d01e8114da6deaa0b6.jpg或者bd19af59d343b1955cc6edeff87365b8ca0.jpg并不是所有的非奇异矩阵都能对角化,因为要让特征向量构成基才行),在线性代数的动态观-线性变换(二)中已经提到了相似矩阵,实际上对角化后的矩阵D与原始矩阵A互为相似矩阵,此时P矩阵就是由特征向量构成的基变换矩阵。矩阵A和D是同一个相似变换在不同基下的表示方式,但D是一个对角矩阵,作为一个线性变换矩阵确实比一般的矩阵更简洁6447aebcfb9f0112bbd78bcdf8fa48c05ea.jpg

现在将向量放在特征向量空间中来研究一下变换矩阵对向量的作用情况:

A.X=A.P.X`=P.D.X`;

A.A.X=A.P.D.X`=P.D.D.X`;

该例表示线性变换矩阵A对向量X连续作用的计算表达式,由于D是个对角矩阵在计算量上比原先简化了很多。

 

 

转载于:https://my.oschina.net/u/1268334/blog/3049154

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值