特征值与特征向量_矩阵的特征向量和特征值与优化方法

e0a724ba4324a5f8eecb4611c44bca87.png

矩阵特征值和特征向量的描述

a6fe6d32e1db9707c9323fd5e0ca9bb0.png

特征值绝对值大于1和小于1:

22b504e9b567570e7c42e2b093be6c9e.png

配图说明:

f42a250bbe705cde9260006a9a5963a5.png

非奇异矩阵乘以任意向量,某个特征值小于1的分量逐渐收缩:

6c91f8545ff5c32d4bd002d17c54f091.png

某个分量一直在减小:

a66e6472bca80feea1fdb482cd7c3652.png

雅可比迭代

解决Ax=b的问题。

D是对角矩阵,对角上的元素和A相同(便于求逆)E是对角线元素为0,其他为A

ce19c772f1f4cd95de43ec49ab9c0c8f.png

通过14式可以知道,如果x为最优解时,迭代不会改变x的值。

d584077aab09d0f4a24946564f302894.png

上面的迭代在干嘛:

每次进行14不影响真实分量x,只影响误差e,如果B的所有特征值小于1,经过有限次迭代e会收敛到0

d2586fc331a7750d255ceefc45564b03.png

收敛速度的讨论:

含有最大特征值对应的特征向量的初始e,收敛最慢

7da3c8a636c41ac6526e466800bed4fa.png

一个雅可比迭代的例子:

求特征值:

13b10d3f17a88a982d04dba0acc6c252.png

f4667903b320e2eadca49c23a8ed24c7.png

求特征向量:

556023b8454f7d1796af130cdfabd1d1.png

c98e7a77176280f6c0c78ca865aa6437.png

迭代:

912f9e3dbad86c25ecbc3a8313f6711e.png

B的特征值和向量将不在和A相同:

45f0169ee7f5fdaf4db4056ee4ef18d1.png

02a9be5e99fe2b3792ca94c58073db5a.png

之前的最速下降算法分析:

4151dc692a34453f6d56951f519018c3.png

可见如果

18a3a32c615f8d692b52ed20db002654.png

是其中的一个特征向量那么一次迭代就求出了解。

上面式子结合:

4b330a91e8cb107b2d29ace34a946d82.png

的由来:

bc8f7e3c47f0de8a132483f49fadf222.png

0ff5571f0c3a5784a78dd66aa50fd7d9.png

的得到:

a2e548c7d425bd3a83b03f023a9f6565.png

395706ed3bc13468ed6e122310130cbe.png

看。

一次迭代出结果的图像表示:

552b159bd2ea12ed3477c8cb008adb1d.png

c2cee0a9fa59b7baee0ebafe4f286663.png

扩展到e不是特征向量的情况:

e表示为A的特征向量的组合;

f48f0d2d6cbfff8892ff3c235ef84938.png

一些性质:

7702f92821317910ec7eabdd9d67e53a.png

带入最大梯度优化:

461433f35cd84a50dde6b1ae67761463.png

考虑只有一个特征向量,即所有特征值相等:

899e2c0253e91a17fa18e5d0693d90a2.png

可见一步就达到目的了

解释原因因为是圆形,导致无论起点在哪e都指向圆心:

ae013014028f08a341138bed66f6067c.png

af61d7054b0949e5539089a82943f34d.png

简单讨论一般情况,即多个特征值,且不相等:

和雅可比迭代的区别:

14f2bbb8ac822afc6042e2605f9a1c98.png

一般情况下的收敛:

二次函数可以写成,x为最优值,p是任一点

0ed6e4ecd947d9710de93f69dbfd8652.png

最小化8即最小化

3214e9026b935c7bde175ca3aa5520d6.png

带入迭代关系;

4bd292fdee232629a404c3e1fe32c484.png

可见w只要小于1,迭代数次后e减少

增加变量和变形:

d6651462f660b0f9b25e345c02c5b647.png

根据上面画出图像:

c52d2ef3a76db410f7223d87e19c872d.png

通过上面图分析上面讨论过的特征值相同和e为特征向量的例子:

1e1aa3928faffa12fc589c02cc745a03.png

几种情况下迭代收敛速度的讨论:

b4ba91f5c50261b8b4080f3da1a2f365.png

865f9ad6d7a1c763216369eb574be6fc.png

不同

92a29798f2a4de631bdb345bccf37fd7.png

3491c7055dcca00031f3246e3b9355e9.png

上面的过程每一步迭代都是正交的

An Introduction to the Conjugate Gradient Method Without the Agonizing Pain

有人看待续。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值