矩阵特征值和特征向量的描述
特征值绝对值大于1和小于1:
配图说明:
非奇异矩阵乘以任意向量,某个特征值小于1的分量逐渐收缩:
某个分量一直在减小:
雅可比迭代
解决Ax=b的问题。
D是对角矩阵,对角上的元素和A相同(便于求逆)E是对角线元素为0,其他为A
通过14式可以知道,如果x为最优解时,迭代不会改变x的值。
上面的迭代在干嘛:
每次进行14不影响真实分量x,只影响误差e,如果B的所有特征值小于1,经过有限次迭代e会收敛到0
收敛速度的讨论:
含有最大特征值对应的特征向量的初始e,收敛最慢
一个雅可比迭代的例子:
求特征值:
求特征向量:
迭代:
B的特征值和向量将不在和A相同:
之前的最速下降算法分析:
可见如果
是其中的一个特征向量那么一次迭代就求出了解。
上面式子结合:
的由来:
的得到:
看。
一次迭代出结果的图像表示:
扩展到e不是特征向量的情况:
e表示为A的特征向量的组合;
一些性质:
带入最大梯度优化:
考虑只有一个特征向量,即所有特征值相等:
可见一步就达到目的了
解释原因因为是圆形,导致无论起点在哪e都指向圆心:
简单讨论一般情况,即多个特征值,且不相等:
和雅可比迭代的区别:
一般情况下的收敛:
二次函数可以写成,x为最优值,p是任一点
最小化8即最小化
带入迭代关系;
可见w只要小于1,迭代数次后e减少
增加变量和变形:
根据上面画出图像:
通过上面图分析上面讨论过的特征值相同和e为特征向量的例子:
几种情况下迭代收敛速度的讨论:
和
不同
上面的过程每一步迭代都是正交的
An Introduction to the Conjugate Gradient Method Without the Agonizing Pain
有人看待续。