海森矩阵 Hessian matrix

二阶偏导数矩阵也就所谓的赫氏矩阵(Hessian matrix).
一元函数就是二阶导,多元函数就是二阶偏导组成的矩阵.
求向量函数最小值时用的,矩阵正定是最小值存在的充分条件。
经济学中常常遇到求最优的问题,目标函数是多元非线性函数的极值问题尚无一般的求解方法,但判定局部极小值的方法是有的,就是用hessian矩阵,
在x0点上,hessian矩阵是负定的,且各分量的一阶偏导数为0,则x0为极大值点.
在x0点上,hessian矩阵是正定的,且各分量的一阶偏导数为0,则x0为极小值点.
矩阵是负定的充要条件是各个特征值均为负数.
矩阵是正定的充要条件是各个特征值均为正数.

 

Hessian_matrix_1

 

http://zh.wikipedia.org/zh-cn/%E9%BB%91%E5%A1%9E%E7%9F%A9%E9%98%B5

http://sunyaxin2005.blog.163.com/blog/static/46252046201001344241985/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值