二次不等式恒成立求参数范围

前言

对二次不等式的恒成立问题的类型和对应的处理策略做以总结,总原则:利用三个二次的关系,进行相应的转化划归。比如本来是解二次不等式,结果我们却是利用其对应的二次函数的图像来思考。为了让思考的模型简单,我们暂不考虑仿二次不等式,只考虑二次不等式,

\(ax^2+bx+c\ge 0(a>0)\),或者直接思考\(x^2-2ax+3a-1\ge 0\)

(当\(a<0\)时,可以仿照\(a>0\)来转化模型得到相应的不等式组)

类型和策略

  • 类型1:形如\(f(x)\ge 0(x\in R)\)型的不等式确定参数范围

处理策略:需要限制\(a\)\(\Delta\),即\(\left\{\begin{array}{l}{a>0}\\{\Delta \leq 0}\end{array}\right.\)

具体到上例,即\(\Delta=4a^2-4(3a-1)\leq 0\),求解即可。

  • 类型2:形如\(f(x)\ge 0 (x\in [m,+\infty))\)型的不等式确定参数范围

处理策略:分类讨论,转化划归;

如上例是在\([2,+\infty)\)上恒成立,

\(\Delta \leq 0\)\(\left\{\begin{array}{l}{\Delta > 0}\\{[对称轴]a< 2}\\{f(2)\ge 0}\end{array}\right.\)

  • 类型3:形如\(f(x)\ge 0(x\in[a,b])\)型的不等式确定参数范围

如上例\(x\in [2,3]\)上恒成立,

\(\Delta \leq 0\)

\(\left\{\begin{array}{l}{\Delta > 0}\\{[对称轴]a< 2}\\{f(2)\ge 0}\end{array}\right.\)

\(\left\{\begin{array}{l}{\Delta > 0}\\{[对称轴]a> 3}\\{f(3)\ge 0}\end{array}\right.\)

特别的,当\(x^2-2ax+3a-1\leq 0\)\(x\in [2,3]\)上恒成立时,

只需要限制\(\left\{\begin{array}{l}{f(2)\leq 0}\\{f(3)\leq 0}\end{array}\right.\)

  • 类型4:形如\(f(x)\ge 0(参数m\in[a,b])\)型的不等式确定参数范围

处理策略:主辅元换位,

如不等式\(x^2-2ax+3a-1\ge 0\)\(a\in [2,3]\)恒成立,求\(x\)的取值范围。

\(f(x)=x^2-2ax+3a-1\),则\(f(x)\)是关于\(x\)的二次函数,

若将上述函数以\(a\)为元,可以整理为另一个函数

\(g(a)=(3-2x)a+x^2-1\),则\(g(a)\)是关于\(a\)的一次函数,

现要\(g(a) \ge 0\),则只需\(\left\{\begin{array}{l}{g(2)\ge 0}\\{g(3)\ge 0}\end{array}\right.\)

对应例题

  • 角度一 形如\(f(x)\ge 0(f(x)\leq 0)(x\in R)\)型的不等式确定参数范围

例1(2017铜川模拟)不等式\(a^2+8b^2\ge \lambda b(a+b)\)对于任意的\(a,b\in R\)恒成立,则实数\(\lambda\)的取值范围为_____________。

法1:(将\(b\)\(\lambda\)看做系数)将不等式转化为\(a^2-\lambda ba+8b^2-\lambda b^2\ge 0\)对任意的\(a\in R\)恒成立,

\(\Delta =b^2\lambda^2-4(8b^2-\lambda b^2)=b^2(\lambda^2+4\lambda-32)\leq 0\)

解得\(-8\leq \lambda \leq 4\)

法2:当\(b=0\)时,即\(a^2\ge 0\)恒成立,\(\lambda\in R\)

\(b\neq 0\)时,原不等式等价于\((\cfrac{a}{b})^2+8\ge \lambda (\cfrac{a}{b})+\lambda\)

\(\cfrac{a}{b}=t\in R\),即\(t^2-\lambda t+8-\lambda\ge 0\)对任意的\(t\in R\)恒成立,

\(\Delta =(\lambda)^2-4(8-\lambda)\leq 0\)

解得\(-8\leq \lambda \leq 4\)

综上所述(两种情况取交集),实数\(\lambda\)的取值范围为\(-8\leq \lambda \leq 4\)

  • 角度二 形如\(f(x)\ge 0(x\in[a,b])\)型的不等式确定参数范围

例2设函数\(f(x)=mx^2-mx-x(m\neq 0)\),若对于\(x\in [1,3]\)\(f(x)<-m+5\)恒成立,求\(m\)的取值范围。

法1:利用二次函数求解,要使\(f(x)<-m+5\)恒成立,即\(mx^2-mx+m-6<0\)

\(m(x-\cfrac{1}{2})^2+\cfrac{3}{4}x-6<0\)\(x\in[1,3]\)上恒成立,

\(g(x)=m(x-\cfrac{1}{2})^2+\cfrac{3}{4}x-6,x\in [1,3]\)

\(m>0\)时,\(g(x)\)\([1,3]\)上是增函数,

所以\(g(x)_{max}=g(3)=7m-6<0\), 解得\(m<\cfrac{6}{7}\)

则有\(0<m<\cfrac{6}{7}\)

\(m<0\)时,\(g(x)\)\([1,3]\)上是减函数,

所以\(g(x)_{max}=g(1)=m-6<0\), 解得\(m<6\)

则有\(m<0\)

综上所述,\(m\)的取值范围是\((-\infty,0)\cup(0,\cfrac{6}{7})\)

法2:分类参数法,因为\(x^2-x+1>0\),由\(f(x)<-m+5\)可得\(m(x^2-x+1)-6<0\)

故有\(m<\cfrac{6}{x^2-x+1}\)恒成立,

又因为函数\(y=\cfrac{6}{x^2-x+1}=\cfrac{6}{(x-\cfrac{1}{2})^2+\cfrac{3}{4}}\)在区间\([1,3]\)上的最小值为\(\cfrac{6}{7}\),

故只需\(m<\cfrac{6}{7}\)即可,

又因为\(m\neq 0\),所以\(m\)的取值范围是\((-\infty,0)\cup(0,\cfrac{6}{7})\)

例3已知函数\(f(x)=x^2 +ax-2a≥0\)在区间 \([1,5]\)上恒成立,求参数\(a\)的取值范围。

法1,二次函数法

①由于\(\Delta=a^2+8a≤0\)时满足题意,解得\(-8≤a≤0\)

求得对称轴\(x=-\cfrac{a}{2}\)

再考虑对称轴\(x=-\cfrac{a}{2}\)和给定区间\([1,5]\)的相对位置关系

②当\(-\cfrac{a}{2}≤1\)时,即\(a≥-2\)时,函数\(f(x)\)在区间\([1,5]\)单调递增,

所以\(f(x)_{min}=f(1)=1+a-2a≥0\),解得\(-2≤a≤1\),又因为\(a≥-2\),所以得到\(-2≤a≤1\)

③当\(-\cfrac{a}{2}≥5\)时,即\(a≤-10\)时,函数\(f(x)\)在区间\([1,5]\)单调递减,

所以\(f(x)_{min}=f(5)=25+5a-2a≥0\),解得\(a≥-\cfrac{25}{3}\),又因为\(a≤-10\),所以得到\(a\in\varnothing\).

④当\(1<-\cfrac{a}{2}<5\),即\(-10<a<-2\)时,\(f(x)_{min}=f(-\cfrac{a}{2})=\cfrac{a^2}{4}-\cfrac{a^2}{2}-2a≥0\)

得到\(-8≤a≤0\),又\(-10<a<-2\),所以\(-8≤a<-2\)(这种情形可以省略)

综上可得\(a\)的取值范围是\([-8,1]\)

法2:分离参数法,先转化为\((x-2)a\ge -x^2,x\in [1,5]\)

接下来就转化为了三个恒成立的命题了,

\(x=2\)时,原不等式即\((2-2)a\ge -4\)\(a\in R\)都符合题意;

\(2<x<5\)时,原不等式等价于\(a\ge \cfrac{-x^2}{x-2}=-(x-2)-\cfrac{4}{x-2}-4=g(x)\)恒成立;

\(g(x)=-(x-2)-\cfrac{4}{x-2}-4\leq 2\sqrt{(x-2)\cdot \cfrac{4}{x-2}}-4=-8\)

求得当\(x=4\)时,\(g(x)_{max}=-8\),故\(a\ge -8\)

\(1<x<2\)时,原不等式等价于\(a\leq \cfrac{-x^2}{x-2}=-(x-2)-\cfrac{4}{x-2}-4=g(x)\)恒成立;

\(g(x)=-(x-2)-\cfrac{4}{x-2}-4\ge 2\sqrt{-(x-2)\cdot \cfrac{-4}{x-2}}-4=0\)

当且仅当\(x=0\)时取到等号,并不满足前提条件\(1<x<2\),故是错解。

此时需要借助对勾函数的单调性,函数\(y=x+\cfrac{4}{x}\)在区间\([1,2]\)上单调递增,

那么\(y=x-2+\cfrac{4}{x-2}\)在区间\([1,2]\)上单调递减,

\(y=-(x-2)-\cfrac{4}{x-2}\)在区间\([1,2]\)上单调递增,\(y=-(x-2)-\cfrac{4}{x-2}-4\)在区间\([1,2]\)上单调递增,

\(g(x)_{min}=g(1)=1\),故\(a\leq 1\)

以上三种情况取交集,得到\(a\in [-8,1]\)

  • 角度三 形如\(f(x)\ge 0(参数m\in[a,b])\)型的不等式确定参数范围

例4已知\(a\in[-1,1]\)时不等式\(x^2+(a-4)x+4-2a>0\)恒成立,则\(x\)的取值范围是多少?

分析:主辅元换位,把不等式的左端看成关于\(a\)的一次函数,

记为\(f(a)=(x-2)a+x^2-4x+4\),则由\(f(a)>0\)对于任意的\(a\in[-1,1]\)恒成立,

只需\(\begin{cases}f(-1)>0\\f(1)>0\end{cases}\)即可,

\(\begin{cases}x^2-5x+6>0\\x^2-3x+2>0\end{cases}\)

解得\(x<1\)\(x>3\),则\(x\)的取值范围是\((-\infty,1)\cup(3,+\infty)\).

高阶转化

例1【2019届高三理科三轮模拟训练题】【恒成立问题】【二次函数的最值问题】

已知正项递增等比数列\(\{a_n\}\)的前\(n\)项和为\(S_n\),且\(a_1a_4=27\)\(a_2+a_3=12\),若\(\forall n\in N^*\)\(2a_{n+1}S_n-21a_{n+1}\ge t\)恒成立,则实数\(t\)的取值范围是__________。

分析:由等比数列性质可知,\(a_2a_3=27\)\(a_2+a_3=12\)

\(a_2\)\(a_3\)是方程\(x^2-(a_2+a_3)x+a_2a_3=0\),即方程为\(x^2-12x+27=0\)的两个根,

解得\(a_2=3\)\(a_3=9\),或\(a_2=9\)\(a_3=3\)(舍去);

\(a_n=3^{n-1}\),从而计算得到\(S_n=\cfrac{3^n-1}{2}\)

故已知条件\(2a_{n+1}S_n-21a_{n+1}\ge t\)可以变形为

\(t\leq 2\cdot 3^n\cdot \cfrac{3^n-1}{2}-21\cdot 3^n=(3^n)^2-22\cdot 3^n=(3^n-1)^2-121\)

\(g(n)=(3^n-1)^2-121\),以下类比二次函数求最值的方法,注意\(n\in N^*\)的条件限制,

则当\(n=2\)时,\(g(n)_{min}=(3^2-11)^2-121=-117\),故\(t\leq -117\),即所求范围为\((-\infty,-117]\)

解后反思:①本题目的难点之一是解方程求数列通项公式;②恒成立问题;③求二次函数的最值;

对应练习:

练1(2017新余模拟)不等式\(x^2-2x+5\ge a^2-3a\)对任意实数\(x\)恒成立,则实数\(a\)的取值范围是

分析:令\(a^2-3a=A\)\(x^2-2x+5=f(x)\)

则转化为\(f(x)\ge A\)对任意实数恒成立,即需要求解\(f(x)_{min}\);

练22、已知不等式\(x^2-2x+a>0\)对任意实数\(x\in[2,3]\)恒成立,则实数\(a\)的取值范围是___________.

分析:分离参数得到\(a>-x^2+2x\)对任意实数\(x\in[2,3]\)恒成立,

即需要求函数\(f(x)=-x^2+2x,x\in[2,3]\)\(f(x)_{max}\),

\(f(x)=-(x-1)^2+1,x\in[2,3]\),故\(f(x)_{max}=f(2)=0\),则得到\(a>0\).

练33、已知函数\(f(x)=-x^2+ax+b^2-b+1(a\in R,b\in R)\),对任意实数\(x\)都有\(f(1-x)=f(1+x)\)成立,若当\(x\in[-1,1]\)时,\(f(x)>0\)恒成立,则\(b\)的取值范围是_____________.

分析:先由\(f(1-x)=f(1+x)\)得到,二次函数的对称轴\(x=-\cfrac{a}{-2}=1\),解得\(a=2\)

故题目转化为\(-x^2+2x+b^2-b+1>0\)对任意\(x\in [-1,1]\)恒成立,

整体法分离参数

得到\(b^2-b>x^2-2x-1\)对任意\(x\in[-1,1]\)恒成立。

\(g(x)=x^2-2x-1,x\in[-1,1]\),需要求函数\(g(x)_{max}\)

\(g(x)=x^2-2x-1=(x-1)^2-2,x\in[-1,1]\)

\(g(x)\)在区间\([-1,1]\)上单调递减,则\(g(x)_{max}=g(-1)=2\)

\(b^2-b>2\),解得\(b<-1\)\(b>2\)

转载于:https://www.cnblogs.com/wanghai0666/p/9574575.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值