【补充习题四】凑微分技巧与积分因子法解常微分方程

所谓“凑微分”是将

$$\alpha(x)f(x)+\beta(x)f'(x)$$

表示成$[G(x)f(x)]'$形式,其它项均与$f(x)$无关。例如:

$$f(x)+xf'(x)=[xf(x)]'$$

(1). 若$\beta'(x)=\alpha(x)$,则

$$\alpha(x)f(x)+\beta(x)f'(x)=[\beta(x)f(x)]'$$

(2).若$\beta'(x)\neq\alpha(x)$,设$\beta(x)\neq 0, x\in D$

$$\alpha(x)f(x)+\beta(x)f'(x)=\beta(x)\left[f'(x)+\frac{\alpha(x)}{\beta(x)}f(x)\right]$$

乘,除取值非零函数$g(x)$有

$$\frac{\beta(x)}{g(x)}\left[g(x)f'(x)+g(x)\frac{\alpha(x)}{\beta(x)}f(x)\right]$$

令$$g'(x)=g(x)\frac{\alpha(x)}{\beta(x)}$$

解得

$$g(x)=e^{\int \frac{\alpha(x)}{\beta(x)}dx}$$

我们称$g(x)$为积分因子.练习将以下个式写成全微分形式或求解常微分方程:

1. $$f(x)-xf'(x)$$

2.$$f(x) \sin x +f'(x)$$

3.$$f(x)-x^{-n}f'(x)$$

4.$$f(x)+x^{n}f'(x)$$

5.$$x^{n}f(x)+\frac{1}{1+x^{2}}f'(x)$$

6.$$\alpha(x)f(x)+\beta(x)f'(x)+h(x)=Q(x)$$

7.$$\alpha(x)f'(x)+\beta(x)f''(x)+h(x)=Q(x)$$

 

转载于:https://www.cnblogs.com/zhangwenbiao/p/5452381.html

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值