Precision:精确率
Recall:召回率
Accuracy:准确率
F1 Score:F1分数
计算公式:
precision = TP / (TP + FP)
recall = TP / (TP + FN)
accuracy = (TP + TN) / (TP + FP + TN + FN)
F1 Score = P*R/2(P+R),其中P和R分别为 precision 和 recall
需要知道的TP、FP、TN、FN
- TP,True Positive
- FP,False Positive
- TN,True Negative
- FN,False Negative
大概意思是 真正 假正 真负 假负
例如:
举个简单的二元分类问题 例子:
假设,我们要对某一封邮件做出一个判定,判定这封邮件是垃圾邮件、还是这封邮件不是垃圾邮件?
如果判定是垃圾邮件,那就是做出(Positive)的判定;
如果判定不是垃圾邮件,那就做出(Negative)的判定。
True Positive(TP)意思表示做出Positive的判定,而且判定是正确的。因此,TP的数值表示正确的Positive判定的个数。
同理,False Positive(TP)数值表示错误的Positive判定的个数。
依此,True Negative(TN)数值表示正确的Negative判定个数。
False Negative(FN)数值表示错误的Negative判定个数。