计算机视觉摔倒检测,基于计算机视觉的室内跌倒检测研究

本文探讨了跌倒检测在老龄化社会中的重要性,并针对现有方法的不足,提出了一种新的基于人体多质心偏移向量运动特征的跌倒检测模型。通过椭圆拟合人体轮廓,提取多质心偏移向量,利用K-means聚类和视觉词包方法转化为视觉语句,进一步使用有向无环图支持向量机和隐马尔可夫模型进行跌倒检测,实验结果表明该方法具有良好的检测效果。
摘要由CSDN通过智能技术生成

摘要:

跌倒是老年群体面临的主要健康威胁之一,对于生理结构衰老和身体机能退化的老年人来说,意外跌倒会给他们带来严重的身心伤害,甚至威胁到他们的生命.在人口老龄化问题日益严峻的形势下,进行跌倒检测研究具有十分重要的意义,并已成为一项研究热点.目前,在该领域中已经有多种跌倒检测方法,但仍存在一些问题有待解决.本文借助于正在逐渐普及的家庭安全监控摄像设备,对基于计算机视觉的跌倒检测方法进行了研究. 在基于计算机视觉的跌倒检测研究方法中,常用的特征包括人体矩形框宽高比和轮廓质心.然而,矩形框宽高比易受到人体活动的干扰,而质心... 展开 跌倒是老年群体面临的主要健康威胁之一,对于生理结构衰老和身体机能退化的老年人来说,意外跌倒会给他们带来严重的身心伤害,甚至威胁到他们的生命.在人口老龄化问题日益严峻的形势下,进行跌倒检测研究具有十分重要的意义,并已成为一项研究热点.目前,在该领域中已经有多种跌倒检测方法,但仍存在一些问题有待解决.本文借助于正在逐渐普及的家庭安全监控摄像设备,对基于计算机视觉的跌倒检测方法进行了研究. 在基于计算机视觉的跌倒检测研究方法中,常用的特征包括人体矩形框宽高比和轮廓质心.然而,矩形框宽高比易受到人体活动的干扰,而质心的变化则不能理想地区分跌倒和类似跌倒动作,比如突然坐下等动作,并且二者对于检测平行于摄像头的跌倒动作能力有限.针对以上问题,本文提出了一种人体多质心偏移向量运动特征及其提取方法,并基于该特征提出了两种跌倒检测模型. 本文主要的研究工作包括以下两部分: 通过混合高斯背景模型从图像序列中提取人体前景,然后使用椭圆拟合人体目标,从而定位人体的主要轮廓.根据宽高比将人体主要轮廓划分为三个区域,然后跟踪每个区域的质心,利用本文提出的多质心偏移向量提取方法从三个区域中提取人体质心变化特征.使用 K-means聚类算法分析多质心偏移向量,建立视觉词包,将人体运动过程转化为视觉语句,复杂的活动理解问题便转化成相对简单的文本分析问题. 根据视觉语句的特点,本文提出了两种跌倒检测模型.对于不同长度的视觉语句,使用词频模型将其转化为相同维度的特征向量,提出了基于有向无环图支持向量机的跌倒检测模型,将得到的特征向量作为其输入向量,从而对人体活动进行分类.本文将视觉单词作为观测状态,视觉语句作为观测状态序列,提出了基于隐马尔可夫模型的跌倒检测模型,通过分析人体在运动过程中的空间时序规律来判断人体是否跌倒.实验结果表明,两种跌倒检测模型都有良好的检测效果. 收起

展开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值