(小规模)b牌棋盘完美覆盖数【整理】

(小规模)b牌棋盘完美覆盖数

农夫三拳@seu(drizzlecrj@gmail.com)

     考虑一个普通的国际象棋棋盘,它被分成8*8(8行8列)的64个正方形。设有形状一样的多米诺骨牌,每张牌恰好覆盖棋盘上相邻的两个方格(即1*2的骨牌)。那么能否把32个这样的1*2骨牌放到棋盘上,使得任何两张牌均不重叠,每张多米诺骨牌覆盖两个方格,并且棋盘上所有的方格都被覆盖住?我们把这样一种排列称为被多米诺骨牌的完美覆盖。这是一个简单的排列问题,人们能够很快构造许多不同的完美覆盖。但是计算不同的完美覆盖的总数就不是一件容易的事了,不过,这还是有可能做到的。这个数由M.E.Fischer在其一篇名为Statistical Mechanics of Dimers on a Plane Lattice的论文中计算出了不同的完美覆盖总数为: 12988816 = 24 * (901)2 。而后Fischer得出了更一般的公式用来求解1*2骨牌覆盖m*n(m,n至少一个为偶数)方格的公式,  。其实这就是分子生物学著名的二聚物问题。

     分析完上面的问题,大家自然会有一个问题,对于一般的1*b的方格来覆盖m*n的棋盘,完美覆盖数又是多少呢?这里,我们称1*b的方格为b-牌(b-omino)。一个已知的事实是,如果一个m*n的棋盘拥有b牌的完美覆盖,那么b是m的一个因子或者b是n的一个因子。本文将给出0<b<5,用来覆盖m*n棋盘的方法数(我们令n不大于m):

1)b=1 的情况

显然,覆盖方法数只有1种

2)b=2的情况

      前面提到了Fischer的三角公式,但是有个问题,如果结果很大的时候,需要给出取模解的时候,用公式就显得力不从心了。

i)而我们发现当n=2的时候,结果数刚好是Fibonacci数列。对于m较大可以用矩阵幂算法解决。

ii)n=3的时候可以推倒出递推式

    

以及边界条件

其中am代表在左上角将第一块骨牌横着放的总方案数,bm代表在左上角竖着放第一块骨牌的方案数。

不难得出am的表达式,继而使用矩阵幂求出大数据求模的解。周源在WC08的讲稿中给出了am和bm的生成函数:

iii) n>3的情况。其实我们注意到b=2,应该能够考虑到二进制,继而考虑到状态压缩动态规划。首先dfs出相邻两行的状态转移方式Sfrom->Sto,继而用动态规划转移得到每行的方案数Hs。不难看出时间复杂度为O(m*2n)。菜鱼同学利用特征方程计算了每行的方案数Hs=,由于第二项较小可以忽略,因此Hs约等于0.85*2.414n,即2n<Hs<3n。因此一个更加精确的时间复杂度为O(m*0.85*2.414n), 不难看出这里n的范围比较小,一般小于12。

3) b=3的情况或者b=4的情况

均可以利用上述推倒递推关系的方法求解。

 

最后推荐几个相关的资料供读者参考:

冯跃峰. 棋盘上的组合数学.[M]. 上海:上海教育出版社,1998.

沈晓斌 棋盘的1*3骨牌骨牌覆盖的技术.[J]. 泉州师专学报, 1997,(2)

沈晓斌等1*4格牌覆盖棋盘的计数.[J]. 泉州师专学报, 2000,(2)      

 

L型组件填图问题 1.问题描述 设B是一个n×n棋盘,n=2k,(k=1,2,3,…)。用分治法设计一个算法,使得:用若干个L型条块可以覆盖住B的除一个特殊方格外的所有方格。其中,一个L型条块可以覆盖3个方格。且任意两个L型条块不能重叠覆盖棋盘。 例如:如果n=2,则存在4个方格,其中,除一个方格外,其余3个方格可被一L型条块覆盖;当n=4时,则存在16个方格,其中,除一个方格外,其余15个方格被5个L型条块覆盖。 2. 具体要求 输入一个正整n,表示棋盘的大小是n*n的。输出一个被L型条块覆盖的n*n棋盘。该棋盘除一个方格外,其余各方格都被L型条块覆盖住。为区别出各个方格是被哪个L型条块所覆盖,每个L型条块用不同的字或颜色、标记表示。 3. 测试据(仅作为参考) 输入:8 输出:A 2 3 3 7 7 8 8 2 2 1 3 7 6 6 8 4 1 1 5 9 9 6 10 4 4 5 5 0 9 10 10 12 12 13 0 0 17 18 18 12 11 13 13 17 17 16 18 14 11 11 15 19 16 16 20 14 14 15 15 19 19 20 20 4. 设计与实现的提示 对2k×2k的棋盘可以划分成若干块,每块棋盘是原棋盘的子棋盘或者可以转化成原棋盘的子棋盘。 注意:特殊方格的位置是任意的。而且,L型条块是可以旋转放置的。 为了区分出棋盘上的方格被不同的L型条块所覆盖,每个L型条块可以用不同的字、颜色等来标记区分。 5. 扩展内容 可以采用可视化界面来表示各L型条块,显示其覆盖棋盘的情况。 经典的递归问题, 这是我的大代码, 只是本人很懒, 不想再优化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值