理解卷积神经网络中的channel

在一般的深度学习框架的 conv2d 中,如 tensorflowmxnetchannel 都是必填的一个参数

 

tensorflow 中,对于输入样本中 channels 的含义,一般是RGB图片,channels的数量是3(R、G、B)。而灰度图是的channels是1;

mxnet 中,一般channels的含义是:每个卷积层中卷积核的数量。

 

为了更好的理解,下面举个例子。图片来自 吴恩达老师的深度学习课程 

假设有一个 6x6x3的图片样本,使用 3x3x3的卷积核。此时输入的 channels 为3。而卷积核中的 in_channels 与需要进行卷积操作的数据channels一致

卷积:27个数字分别与样本对应相乘,在进行求和,得到第一个结果。依次进行,最终得到 4x4 的结果

由于只有一个卷积核,最终得到的结果是 4x4x1,out_channels为1

在实际应用中,都会使用多个卷积核。这里如果再加一个卷积核,就会得到 4x4x2 的结果

总结一下,把上面提到的channels分为三种:

  1. 最初图片的输入样本channels,取决于图片类型,比如RGB;

  2. 卷积操作完成后输出的 out_channels,取决于卷积核的数量。此时的 out_channels 也会作为下一次卷积时的 in_channels;

  3. 卷积核中的 in_channels,刚刚2中已经说了,就是上一次卷积的out_channels,如果是第一次做卷积,就是1中样本图片的 channels

其实在CNN中,搞清楚每一层的传递关系,主要就是heightwidth的变化情况,以及 channels 的变化情况

在看看 tensorflowtf.nn.conv2dinputfilter 这两个参数

input : [batch,in_height,in_width,in_channels]

filter : [filter_height,filter_width,in_channels,out_channels]

 

参考地址:

https://blog.csdn.net/sscc_learning/article/details/79814146

 

转载于:https://www.cnblogs.com/gezhuangzhuang/p/10917249.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值