关于我
编程界的一名小程序猿,目前在一个创业团队任team lead,技术栈涉及Android、Python、Java和Go,这个也是我们团队的主要技术栈。 联系:hylinux1024@gmail.com
0x00 使用进程实现并发
上一篇文章介绍了线程的使用。然而Python
中由于Global Interpreter Lock
(全局解释锁GIL
)的存在,每个线程在在执行时需要获取到这个GIL
,在同一时刻中只有一个线程得到解释锁的执行,Python
中的线程并没有真正意义上的并发执行,多线程的执行效率也不一定比单线程的效率更高。 如果要充分利用现代多核CPU
的并发能力,就要使用multipleprocessing
模块了。
0x01 multipleprocessing
与使用线程的threading
模块类似,multipleprocessing
模块提供许多高级API
。最常见的是Pool
对象了,使用它的接口能很方便地写出并发执行的代码。
from multiprocessing import Pool
def f(x):
return x * x
if __name__ == '__main__':
with Pool(5) as p:
# map方法的作用是将f()方法并发地映射到列表中的每个元素
print(p.map(f, [1, 2, 3]))
# 执行结果
# [1, 4, 9]
复制代码
关于Pool
下文中还会提到,这里我们先来看Process
。
Process
要创建一个进程可以使用Process
类,使用start()
方法启动进程。
from multiprocessing import Process
import os
def echo(text):
# 父进程ID
print("Process Parent ID : ", os.getppid())
# 进程ID
print("Process PID : ", os.getpid())
print('echo : ', text)
if __name__ == '__main__':
p = Process(target=echo, args=('hello process',))
p.start()
p.join()
# 执行结果
# Process Parent ID : 27382
# Process PID : 27383
# echo : hello process
复制代码
进程池
正如开篇提到的multiprocessing
模块提供了Pool
类可以很方便地实现一些简单多进程场景。 它主要有以下接口
apply(func[, args[, kwds]])
执行func(args,kwds)
方法,在方法结束返回前会阻塞。apply_async(func[, args[, kwds[, callback[, error_callback]]]])
异步执行func(args,kwds)
,会立即返回一个result
对象,如果指定了callback
参数,结果会通过回调方法返回,还可以指定执行出错的回调方法error_callback()
map(func, iterable[, chunksize])
类似内置函数map()
,可以并发执行func
,是同步方法map_async(func, iterable[, chunksize[, callback[, error_callback]]])
异步版本的map
close()
关闭进程池。当池中的所有工作进程都执行完毕时,进程会退出。terminate()
终止进程池join()
等待工作进程执行完,必需先调用close()
或者terminate()
from multiprocessing import Pool
def f(x):
return x * x
if __name__ == '__main__':
with Pool(5) as p:
# map方法的作用是将f()方法并发地映射到列表中的每个元素
a = p.map(f, [1, 2, 3])
print(a)
# 异步执行map
b = p.map_async(f, [3, 5, 7, 11])
# b 是一个result对象,代表方法的执行结果
print(b)
# 为了拿到结果,使用join方法等待池中工作进程退出
p.close()
# 调用join方法前,需先执行close或terminate方法
p.join()
# 获取执行结果
print(b.get())
# 执行结果
# [1, 4, 9]
# <multiprocessing.pool.MapResult object at 0x10631b710>
# [9, 25, 49, 121]
复制代码
map_async()
和apply_async()
执行后会返回一个class multiprocessing.pool.AsyncResult
对象,通过它的get()
可以获取到执行结果,ready()
可以判断AsyncResult
的结果是否准备好。
进程间数据的传输
multiprocessing
模块提供了两种方式用于进程间的数据共享:队列(Queue
)和管道(Pipe
)
Queue
是线程安全,也是进程安全的。使用Queue
可以实现进程间的数据共享,例如下面的demo
中子进程put
一个对象,在主进程中就能get
到这个对象。 任何可以序列化的对象都可以通过Queue
来传输。
from multiprocessing import Process, Queue
def f(q):
q.put([42, None, 'hello'])
if __name__ == '__main__':
# 使用Queue进行数据通信
q = Queue()
p = Process(target=f, args=(q,))
p.start()
# 主进程取得子进程中的数据
print(q.get()) # prints "[42, None, 'hello']"
p.join()
# 执行结果
# [42, None, 'hello']
复制代码
Pipe()
返回一对通过管道连接的Connection
对象。这两个对象可以理解为管道的两端,它们通过send()
和recv()
发送和接收数据。
from multiprocessing import Process, Pipe
def write(conn):
# 子进程中发送一个对象
conn.send([42, None, 'hello'])
conn.close()
def read(conn):
# 在读的进程中通过recv接收对象
data = conn.recv()
print(data)
if __name__ == '__main__':
# Pipe()方法返回一对连接对象
w_conn, r_conn = Pipe()
wp = Process(target=write, args=(w_conn,))
rp = Process(target=read, args=(r_conn,))
wp.start()
rp.start()
# 执行结果
# [42, None, 'hello']
复制代码
需要注意的是,两个进程不能同时对一个连接对象进行send
或recv
操作。
同步
我们知道线程间的同步是通过锁机制来实现的,进程也一样。
from multiprocessing import Process, Lock
import time
def print_with_lock(l, i):
l.acquire()
try:
time.sleep(1)
print('hello world', i)
finally:
l.release()
def print_without_lock(i):
time.sleep(1)
print('hello world', i)
if __name__ == '__main__':
lock = Lock()
# 先执行有锁的
for num in range(5):
Process(target=print_with_lock, args=(lock, num)).start()
# 再执行无锁的
# for num in range(5):
# Process(target=print_without_lock, args=(num,)).start()
复制代码
有锁的代码将每秒依次打印
hello world 0
hello world 1
hello world 2
hello world 3
hello world 4
复制代码
如果执行无锁的代码,则在我的电脑上执行结果是这样的
hello worldhello world 0
1
hello world 2
hello world 3
hello world 4
复制代码
除了Lock
,还包括RLock
、Condition
、Semaphore
和Event
等进程间的同步原语。其用法也与线程间的同步原语很类似。API
使用可以参考文末中引用的文档链接。
在工程中实现进程间的数据共享应当优先使用队列或管道。
0x02 总结
本文对multiprocessing
模块中常见的API
作了简单的介绍。讲述了Process
和Pool
的常见用法,同时介绍了进程间的数据方式:队列和管道。最后简单了解了进程间的同步原语。
通过与上篇的对比学习,本文的内容应该是更加容易掌握的。