迭代器

我们知道,可以直接作用于for循环的数据类型有以下几种:
一类是集合数据类型:list、tuple、dict、set、dir等。

一类是generator,包括生成器和带yield的generator function。

这些可直接作用到for循环的对象成为可迭代对象:Iterable。

可以使用isinstance判断一个对象是否为Iterable对象:

>>>from collections import Iterable

>>>isinstance([],Iterable)

True

>>>isinstance({},Iterable)

True

>>>isinstance('abc',Iterable)

True

>>>isinstance(x for x in range(10),Iterable)

True

>>>isinstance(100,Iterable)

False

生成器都是Iterator对象,但list、tuple、dict、str虽然是Iterable,但不是Iterator。

把list、tuple、str等Iterable变成个Iterator可以使用iter()函数:
>>>isinstance(iter([]),Iterator)

True

为什么list、tuple、str不是Iterator?

这是因为Python中的Iterator表示的一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据可返回时抛出StopIteration错误。可以把这个数据流看做一个有序序列,但我们不能提前知道序列长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据的时候它才会计算。

Iterator可以表示一个无限大的数据流,例如全体自然数。而使用list是永远都无法表示全体自然数的。

小结:

凡是可以作用于for循环的都是Iterable。

凡是可做用于next()函数的对象都是Iterator,它们表示一个惰性的计算序列。

集合数据类型如list、tuple、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

Python的for循环本质上就是通过不断调用next()函数实现的。

如:
for x in [1,2,3,4,5]:

    pass


实际上完全等价:

it =iter([1,2,3,4,5])

while True:
    try:

        x =next(it)

    except StopIteration:

        break