迭代器
我们知道,可以直接作用于for循环的数据类型有以下几种:
一类是集合数据类型:list、tuple、dict、set、dir等。
一类是generator,包括生成器和带yield的generator function。
这些可直接作用到for循环的对象成为可迭代对象:Iterable。
可以使用isinstance判断一个对象是否为Iterable对象:
>>>from collections import Iterable
>>>isinstance([],Iterable)
True
>>>isinstance({},Iterable)
True
>>>isinstance('abc',Iterable)
True
>>>isinstance(x for x in range(10),Iterable)
True
>>>isinstance(100,Iterable)
False
生成器都是Iterator对象,但list、tuple、dict、str虽然是Iterable,但不是Iterator。
把list、tuple、str等Iterable变成个Iterator可以使用iter()函数:
>>>isinstance(iter([]),Iterator)
True
为什么list、tuple、str不是Iterator?
这是因为Python中的Iterator表示的一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据可返回时抛出StopIteration错误。可以把这个数据流看做一个有序序列,但我们不能提前知道序列长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据的时候它才会计算。
Iterator可以表示一个无限大的数据流,例如全体自然数。而使用list是永远都无法表示全体自然数的。
小结:
凡是可以作用于for循环的都是Iterable。
凡是可做用于next()函数的对象都是Iterator,它们表示一个惰性的计算序列。
集合数据类型如list、tuple、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。
Python的for循环本质上就是通过不断调用next()函数实现的。
如:
for x in [1,2,3,4,5]:
pass
实际上完全等价:
it =iter([1,2,3,4,5])
while True:
try:
x =next(it)
except StopIteration:
break
转载于:https://blog.51cto.com/9130745/1734182