扫码下载「CSDN程序员学院APP」,1000+技术好课免费看
APP订阅课程,领取优惠,最少立减5元 ↓↓↓
订阅后:请点击此处观看视频课程
视频教程-使用TensorFlow+keras快速构建图像分类模型-深度学习
学习有效期:永久观看
学习时长:607分钟
学习计划:11天
难度:
「口碑讲师带队学习,让你的问题不过夜」
讲师姓名:倪亮
技术总监/研发总监
讲师介绍:电子科技大学计算机专业硕士 20年的软件从业经验,10余年的Qt开发经验 曾担任Qt官方(Digia)在中国区的开发经理,部门经理,负责Qt在中国的推广,项目研发,商业培训,商业版权售前与售后等业务
☛点击立即跟老师学习☚
「你将学到什么?」
课程分为两条主线:
1 从Tensorflow的基础知识开始,全面介绍Tensorflow和Keras相关内容。通过大量实战,掌握Tensorflow和Keras经常用到的各种建模方式,参数优化方法,自定义参数和模型的手段,以及对训练结果评估与分析的技巧。
2 从机器学习基础算法开始,然后进入到图像分类领域,使用MNIST手写数据集和CIFAR10图像数据集,从简单神经网络到深度神经网络,再到卷积神经网络,最终完成复杂模型:残差网络的搭建。完成这条主线,学员将可以自如地使用机器学习的手段来达到图像分类的目的。
「课程学习目录」
第1章:课程介绍 |
1.课程内容,课程目标概述 |
第2章:Tensorflow基础 |
1.开发环境配置与安装 |
2.常量_上 |
3.常量_下 |
4.变量 |
5.字符串_Sparse_Ragged_Tensor |
6.梯度_上 |
7.梯度_下 |
8.Tensorflow1.X简介 |
9.函数与图的转换 |
10.本章小结 |
第3章:Tensorflow实现机器学习基础算法 |
1.实战线性回归_数据预处理与建模 |
2.线性回归_训练与参数选择 |
3.线性回归_性能调优 |
4.神经网络与Keras简介 |
5.Keras线性回归_建模与训练 |
6.Keras线性回归_参数优化 |
7.Keras线性回归_自定义Metrics |
8.分类模型简介 |
9.实战分类模型_建模 |
10.实战分类模型_训练与评估 |
11.本章小结 |
第4章:Tensorflow + Keras构建神经网络和卷积神经网络模型,进行MINST手写数据集识别实战 |
1.MNIST数据集_认识数据 |
2.MNIST数据集_数据预处理_建模与训练 |
3.MNIST数据集_训练结果分析 |
4.MNIST手写数据集_DNN_批量归一化_Dropout |
5.MNIST数据集_自定义Metrics |
6.MNIST数据集_自定义损失函数与优化器 |
7.MNIST数据集_自定义模型 |
8.卷积神经网络简介_上 |
9.卷积神经网络简介_下 |
10.实战卷积神经网络识别MNIST手写数据集 |
11.本章小结 |
第5章:Tensorflow + Keras构建卷积神经网络和残差网络模型 |
1.CIFAR10数据集_LeNet5 |
2.CIFAR10数据集_VGG_参数保存与加载 |
3.CIFAR10数据集_图像增强 |
4.CIFAR10数据集_回调 |
5.残差网络理论基础简介 |
6.CIFAR10数据集_残差网络_identity block |
7.CIFAR10数据集_残差网络_Convolutional block |
8.CIFAR10数据集_残差网络_建模与训练 |
9.模型迁移 |
10.本章小结 |
「7项超值权益,保障学习质量」
- 大咖讲解
技术专家系统讲解传授编程思路与实战。
- 答疑服务
专属社群随时沟通与讲师答疑,扫清学习障碍,自学编程不再难。
- 课程资料+课件
超实用资料,覆盖核心知识,关键编程技能,方便练习巩固。(部分讲师考虑到版权问题,暂未上传附件,敬请谅解)
- 常用开发实战
企业常见开发实战案例,带你掌握Python在工作中的不同运用场景。
- 大牛技术大会视频
2019Python开发者大会视频免费观看,送你一个近距离感受互联网大佬的机会。
- APP+PC随时随地学习
满足不同场景,开发编程语言系统学习需求,不受空间、地域限制。
「什么样的技术人适合学习?」
- 想进入互联网技术行业,但是面对多门编程语言不知如何选择,0基础的你
- 掌握开发、编程技术单一、冷门,迫切希望能够转型的你
- 想进入大厂,但是编程经验不够丰富,没有竞争力,程序员找工作难。
「悉心打造精品好课,11天学到大牛3年项目经验」
【完善的技术体系】
技术成长循序渐进,帮助用户轻松掌握
掌握深度学习知识,扎实编码能力
【清晰的课程脉络】
浓缩大牛多年经验,全方位构建出系统化的技术知识脉络,同时注重实战操作。
【仿佛在大厂实习般的课程设计】
课程内容全面提升技术能力,系统学习大厂技术方法论,可复用在日后工作中。
「你可以收获什么?」
三大经典算法+三大经典网络模型+两大实用框架(TensorFlow+Keras)
全面掌握Tensorflow和Keras
全面掌握使用机器学习实现图像分类的方法