本篇结合Adams中的TR_rear_pac89.tir文件,介绍一下魔术公式的基本知识。使用魔术公式的轮胎模型主要有Pacejka ’89、Pacejka ’94、MF-Tyre、MF-Swift四种。
1. Pacejka ’89和’94轮胎模型
Pacejka ’89 和’94轮胎模型是以魔术公式主要提出者H. B. Pacejka教授命名的,根据其发布的年限命名。目前有两种直接被ADAMS引用。
魔术公式是用三角函数的组合公式拟合轮胎试验数据,用一套形式相同的公式就可以完整地表达轮胎的纵向力Fx、侧向力Fy、回正力矩Mz、翻转力矩Mx、阻力矩My以及纵向力、侧向力的联合作用工况,故称为“魔术公式”。
魔术公式的一般表达式为:
式中Y(x)可以是侧向力,也可以是回正力矩或者纵向力,自变量x可以在不同的情况下分别表示轮胎的侧偏角或纵向滑移率,式中的系数B、C、D依次由轮胎的垂直载荷和外倾角来确定。
Pacejka ’89轮胎模型认为轮胎在垂直、侧向方向上是线性的、阻尼为常量,这在侧向加速度常见范围≤0.4g,侧偏角≤5°的情景下对常规轮胎具有很高的拟合精度。此外,由于魔术公式基于试验数据,除在试验范围的高精度外,甚至在极限值以外一定程度仍可使用,可以对有限工况进行外推且具有较好的置信度。魔术公式正在成为工业标准,即轮胎制造商向整车厂提供魔术公式系数表示的轮胎数据,而不再是表格或图形。
基于魔术公式的轮胎模型还有较好的健壮性,如果没有某一轮胎的试验数据,而使用同类轮胎数据替代仍可取得很好的效果。
图 基于魔术公式的轮胎模型的输入和输出变量
Pacejka ’89轮胎力与力矩的计算
轮胎纵向力计算公式为:
其中X1为纵向力组合自变量:X1=(κ+Sh),κ为纵向滑移率(负值出现在制动态,-100表示车轮抱死)
C——曲线形状因子,纵向力计算时取B0值:C = B0
B – 刚度因子:B=BCD/(C×D)
Sv——曲线的垂直方向漂移:Sv=0
图 轮胎属性文件中的纵向力计算系数数据块
图 Pacejka ’89轮胎纵向力示例
轮胎侧向力计算公式为:
此时的X1为侧向力计算组合自变量:X1=(α+Sh),α为侧偏角
C——曲线形状因子,侧向力计算时取A0值:C = A0
B – 刚度因子:B=BCD/(C×D)
图 轮胎属性文件中的侧向力计算系数数据块
图 Pacejka ’89轮胎纵向力示例
轮胎回正力矩计算公式为: