轮胎的魔术公式(Magic Fomula)模型

本文详细介绍了基于魔术公式的Pacejka '89和'94轮胎模型,阐述了魔术公式如何通过三角函数组合公式模拟轮胎力学特性,包括纵向力、侧向力和回正力矩的计算,并探讨了模型的适用性和健壮性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇结合Adams中的TR_rear_pac89.tir文件,介绍一下魔术公式的基本知识。使用魔术公式的轮胎模型主要有Pacejka ’89、Pacejka ’94、MF-Tyre、MF-Swift四种。

 

1. Pacejka ’89’94轮胎模型

Pacejka ’89 和’94轮胎模型是以魔术公式主要提出者H. B. Pacejka教授命名的,根据其发布的年限命名。目前有两种直接被ADAMS引用。

魔术公式是用三角函数的组合公式拟合轮胎试验数据,用一套形式相同的公式就可以完整地表达轮胎的纵向力Fx、侧向力Fy、回正力矩Mz、翻转力矩Mx、阻力矩My以及纵向力、侧向力的联合作用工况,故称为“魔术公式”。

魔术公式的一般表达式为:

新しい画像

式中Y(x)可以是侧向力,也可以是回正力矩或者纵向力,自变量x可以在不同的情况下分别表示轮胎的侧偏角或纵向滑移率,式中的系数B、C、D依次由轮胎的垂直载荷和外倾角来确定。

Pacejka ’89轮胎模型认为轮胎在垂直、侧向方向上是线性的、阻尼为常量,这在侧向加速度常见范围≤0.4g,侧偏角≤5°的情景下对常规轮胎具有很高的拟合精度。此外,由于魔术公式基于试验数据,除在试验范围的高精度外,甚至在极限值以外一定程度仍可使用,可以对有限工况进行外推且具有较好的置信度。魔术公式正在成为工业标准,即轮胎制造商向整车厂提供魔术公式系数表示的轮胎数据,而不再是表格或图形。

基于魔术公式的轮胎模型还有较好的健壮性,如果没有某一轮胎的试验数据,而使用同类轮胎数据替代仍可取得很好的效果。

图 基于魔术公式的轮胎模型的输入和输出变量

Pacejka ’89轮胎力与力矩的计算

轮胎纵向力计算公式为:

新しい画像

其中X1为纵向力组合自变量:X1=(κ+Sh),κ为纵向滑移率(负值出现在制动态,-100表示车轮抱死)

C——曲线形状因子,纵向力计算时取B0值:C = B0

D——巅因子,表示曲线的最大值:新しい画像 (1)

BCD——纵向力零点处的纵向刚度:新しい画像 (1)

B – 刚度因子:B=BCD/(C×D)

Sh——曲线的水平方向漂移:新しい画像 (1)

Sv——曲线的垂直方向漂移:Sv=0

E——曲线曲率因子,表示曲线最大值附近的形状:新しい画像 (1)

新しい画像 (6)

图 轮胎属性文件中的纵向力计算系数数据块

 

clip_image018

图 Pacejka ’89轮胎纵向力示例

 

轮胎侧向力计算公式为:

新しい画像 (2)

此时的X1为侧向力计算组合自变量:X1=(α+Sh),α为侧偏角

C——曲线形状因子,侧向力计算时取A0值:C = A0

D——巅因子,表示曲线的最大值:新しい画像 (2)

BCD——侧向力零点处的侧向刚度:新しい画像 (2)

B – 刚度因子:B=BCD/(C×D)

Sh——曲线的水平方向漂移:新しい画像 (2)

Sv——曲线的垂直方向漂移:新しい画像 (2)

E——曲线曲率因子,表示曲线最大值附近的形状:新しい画像 (2)

 

新しい画像

图 轮胎属性文件中的侧向力计算系数数据块

 

clip_image035

图 Pacejka ’89轮胎纵向力示例

 

轮胎回正力矩计算公式为:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值