图像增强_Keras 常用的图像增强方式

本文介绍了在Keras中使用ImageDataGenerator进行图像增强,包括ZCA白化、随机旋转、平移和翻转等操作,以提高深度学习模型的性能。通过实例展示了如何在MNIST数据集上应用这些技术。
摘要由CSDN通过智能技术生成
906c7bfc1a01debff76f7f956d3f61cb.png

欢迎关注 “小白玩转Python”,发现更多 “有趣”

在使用神经网络和深度学习模型时,需要进行数据准备。对于更复杂的物体识别任务,也越来越需要增加数据量。

数据增加意味着增加数据量。换句话说,拥有更大的数据集意味着更健壮的模型。但是获取更多的数据并不总是那么容易,而且可能存在存储数据并将其提供给模型的问题。

为了缓解这个问题,我们可以通过做一些修改手动增加数据,或者我们可以使用一个 Keras 图像预处理类,只需几行代码就可以做到这一点。

在这篇文章中,我们将看到在使用 Keras 开发和评估 Python 中的深度学习模型时,如何使用图像数据集进行数据准备和数据增强。

读完这篇文章,你就会知道:

1. 关于Keras提供的图像增强API以及如何在模型中使用它。如何执行特征标准化;

2. 如何对图像执行 ZCA 白化;

3. 如何对图像数据随机旋转,移位和翻转增强;

4. 如何将增强图像数据保存到磁盘。

图像增强 API:ImageDataGenerator

它从原始批处理中生成批处理的增强数据。该算法首先对图像进行随机变换,然后生成一批新的图像进行训练。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值