欢迎关注 “小白玩转Python”,发现更多 “有趣”
在使用神经网络和深度学习模型时,需要进行数据准备。对于更复杂的物体识别任务,也越来越需要增加数据量。
数据增加意味着增加数据量。换句话说,拥有更大的数据集意味着更健壮的模型。但是获取更多的数据并不总是那么容易,而且可能存在存储数据并将其提供给模型的问题。
为了缓解这个问题,我们可以通过做一些修改手动增加数据,或者我们可以使用一个 Keras 图像预处理类,只需几行代码就可以做到这一点。
在这篇文章中,我们将看到在使用 Keras 开发和评估 Python 中的深度学习模型时,如何使用图像数据集进行数据准备和数据增强。
读完这篇文章,你就会知道:
1. 关于Keras提供的图像增强API以及如何在模型中使用它。如何执行特征标准化;
2. 如何对图像执行 ZCA 白化;
3. 如何对图像数据随机旋转,移位和翻转增强;
4. 如何将增强图像数据保存到磁盘。
图像增强 API:ImageDataGenerator
它从原始批处理中生成批处理的增强数据。该算法首先对图像进行随机变换,然后生成一批新的图像进行训练。