- 导入相应的包
from keras.preprocessing.image import ImageDataGenerator, array_to_img ,img_to_array, load_img
import numpy as np
- 创建一个数据生成器对象
datagen = ImageDataGenerator(
rotation_range = 40, # 随机旋转度数
width_shift_range = 0.2, # 随机水平平移
height_shift_range = 0.2,# 随机竖直平移
rescale = 1/255, # 数据归一化
shear_range = 20, # 随机错切变换
zoom_range = 0.2, # 随机放大
horizontal_flip = True, # 水平翻转
fill_mode = 'nearest', # 填充方式
)
- 参数说明
rotation_range是一个0~180的度数,用来指定随机选择图片的角度。
width_shift和height_shift用来指定水平和竖直方向随机移动的程度,这是两个0~1之间的比
rescale值将在执行其他处理前乘到整个图像上,我们的图像在RGB通道都是0255的整数,这样的操作可能使图像的值过高或过低,所以我们将这个值定为01之间的数。
shear_range是用来进行错切变换的程度,参考错切变换
zoom_range用来进行随机的放大
horizontal_flip随机的对图片进行水平翻转,这个参数适用于水平翻转不影响图片语义的时候
fill_mode用来指定当需要进行像素填充,如旋转,水平和竖直位移时,如何填充新出现的像素 - 载入一张要进行数据增强的图像
# 载入图片
img = load_img('image/train/cat/cat.1.jpg')
x = img_to_array(img)
print(x.shape)
- 提升维度,生成器对象方法要求传入参数是四维
x = np.expand_dims(x,0)
print(x.shape)
- 生成20张图片
i = 0
for batch in datagen.flow(x, batch_size=1, save_to_dir='temp', save_prefix='new_cat', save_format='jpeg'):
i += 1
if i==20:
break
print('finished!')
生成了20张增强后的图像