GMM高斯混合模型学习笔记(EM算法求解)

  提出混合模型主要是为了能更好地近似一些较复杂的样本分布,通过不断添加component个数,能够随意地逼近不论什么连续的概率分布。所以我们觉得不论什么样本分布都能够用混合模型来建模。由于高斯函数具有一些非常有用的性质。所以高斯混合模型被广泛地使用。


    GMM与kmeans相似,也是属于clustering,不同的是。kmeans是把每一个样本点聚到当中一个cluster,而GMM是给出这些样本点到每一个cluster的概率。每一个component就是一个聚类中心。


    GMM(Gaussian Mixture Model)高斯混合模型,由K个不同的Gaussian线性组合而成,每一个Gaussian是混合模型的一个component,GMM的概率密度函数例如以下: 

p(x)=k=1Kp(k)(x|k)=k=1Kπk(x|μk,k)

    依据上式。从GMM中生成一个样本点x分两步: 
    1,从K个component中随机的选择一个 
    2。从该component中选择一个点

    參数说明:N个样本点。K个component,μk,k 是第k个component的均值和协方差矩阵,是模型參数,是须要预计的。

πk是mixing coefficient,表示第k个component被选中的概率。πk=1NNn=1znk,也是模型參数。须要预计。N是高斯(正态)分布。

    对一个样本集建立高斯混合模型的过程,就是依据已知样本集X反推高斯混合模型的參数(μ,,π),这是一个參数预计问题。首先想到用最大似然的方法求解,也就是,要确定參数π,μ,使得它所确定的概率分布生成这些样本点的概率最大。这个概率也就是似然函数,例如以下: 

p(x)=n=1Np(xi)

而一般对于单个样本点其概率较小。多个相乘后更小,easy造成浮点数下溢,所以通常是对似然函数求log,变成加和形式: 
i=1Nlnp(xi)

    这个叫做log似然函数,目标是要最大化它。用log似然函数对參数分别求偏导。令偏导等于0,可求解得參数。 
    然而。GMM的log似然函数是例如以下形式: 
lnp(X)=i=1Nln[k=1Kπk(xi|μk,k)]

    能够看到对数中有求和,直接求导求解将导致一系列复杂的运算,故考虑使用EM算法。(详细思路见上一篇: EM算法学习笔记

    考虑GMM生成一个样本点的过程,这里对每一个xi引入隐变量z,z是一个K维向量,如果生成xi时选择了第k个component,则zk=1,其它元素都为0。Kk=1zk=1
    如果z是已知的。则样本集变成了{X,Z},要求解的似然函数变成了: 

p(X,Z|μ,,π)=n=1Nk=1Kπznkk(xn|μk,k)znk

log似然函数为: 
lnp(X,Z|μ,,π)=n=1Nk=1Kznk[lnπk+ln(xn|μk,k)].()

    能够看到,这次ln直接对Gaussian作用,求和在ln外面,所以能够直接求最大似然解了。

1,初始化一组模型參数π,μ, 
2,E-step


    然而。其实z是不知道的。我们仅仅是如果z已知。

而z的值是通过后验概率观測。所以这里考虑用z值的期望在上述似然函数中取代z。 
    对于一个样本点x: 

p(z)=k=1Kπzkk

p(x|zk=1)=(x|μk,k)

p(x|z)=k=1K(x|μk,k)zk

p(x)=zp(z)p(x|z)=k=1Kπk(x|μk,k)

    后验概率(固定 μ,,π ): 
p(z|x,μ,,π)=p(x|z)p(z)p(x)n=1Nk=1K[πk(xn|μk,k)]znk

    由于{ zn }之间是相互独立的。 
    计算z期望 γ(znk) (z向量仅仅有一个值取1,其余为0): 
γ(znk)=E[znk]=0p(znk=0|xn)+1p(znk=1|xn)=p(znk=1|xn)=p(znk=1)p(xn|znk=1)p(xn)=πk(x|μk,k)Kj=1πj(x|μj,j).

    将z值用期望取代。则待求解的log似然函数(*)式变为: 

Ez[lnp(X,Z|μ,,π)]=n=1Nk=1Kγ(znk)[lnπk+ln(xn|μk,k)].

3,M-step


    如今能够最大化似然函数求解參数了,首先对μ求偏导,令偏导等于0。可得: 

n=1Nk=1Kγ(znk)k(xnμk)=0

μk=1Nkn=1Nγ(znk)xnNk=n=1Nγ(znk).

Nk  是“the effective number of points assigned to cluster k”. 
    再对 k 求偏导,令偏导等于0,可得: 
k=1Nkn=1Nγ(znk)(xnμk)(xnμk)T

    接下来还需求解π。注意到π需满足Kk=1πk=1。所以这是一个带等式约束的最大值问题。使用拉格朗日乘数法。 
    构造拉格朗日函数: 

L=lnp(X|π,μ,)+λ(k=1Kπk1).

    对 π 求导,令导数为0: 
n=1N(x|μk,k)Kj=1πj(x|μj,j)+λ=0

    两边同乘 πk 得: 
n=1Nγ(znk)+λπk=0

Nk+λπk=0

    两边对k求和: 
k=1KNk+k=1Kλπk=0

N+λ=0

    可得: λ=N  
    代入可得: πk=NkN.

4,检查是否收敛 
    反复E-step和M-step两步。直到收敛,就可以求得一个局部最优解。


GMM的建模步骤例如以下图(k=2,高斯分布是蓝色和红色圈): 
gmm


主要參考资料: 
《Pattern Recognization and Machine Learning》 
帮助理解: 
http://blog.pluskid.org/?p=39









本文转自mfrbuaa博客园博客,原文链接:http://www.cnblogs.com/mfrbuaa/p/5111355.html,如需转载请自行联系原作者

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值