matlab normalfit,在Matlab中不应该't fitdist(data,' Lognormal ') give the same result and plot as fitdist(...

博主在Matlab中对数据进行正态和对数正态分布拟合,发现两者虽然参数相同,但在绘图时显示不同结果。在使用fitdist()函数时,直接用'Lognormal'选项得到的曲线更贴近数据,但峰值位置与期望不符。博主寻求对这种现象的解释和理解。
摘要由CSDN通过智能技术生成

我试图将分布曲线拟合到某些数据的直方图 . (我在这里使用了一些模型数据,因为很难上传实际数据 . 我在问题之后已经包含了完整的代码 . )

因为当我在logscale中绘制x轴时,直方图看起来是正态分布的,所以我在将正态分布拟合到数据之前先对数据进行转换,得到以下结果:

>>pdn=fitdist(log(data),'Normal')

pdn =

Normal distribution

mu = -0.334458 [-0.34704, -0.321876]

sigma = 0.351478 [0.342804, 0.360605]

当我用直方图绘制出pdf时,我得到了这个:

44cbc929-f9ff-4361-a2aa-dacfa2c0332e.png

结果对我来说似乎很合理 . 然后我发现在Matlab fitdist() 中,它已经有一个'Lognormal'选项,我真的不需要先转换我的数据,这就是我得到的:

>>pdln = fitdist(data,'Lognormal')

pdln =

Lognormal distribution

mu = -0.334458 [-0.34704, -0.321876]

sigma = 0.351478 [0.342804, 0.360605]

与我之前完全相同的均值和标准差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值