可由线性表示且表达式唯一_向量空间的线性映射|线性代数漫步(四)

本文深入探讨了线性代数中的线性映射概念,包括加性、齐性和线性映射的构造。举例说明了零映射、恒等映射和微分映射等特殊类型的线性映射,并证明了线性映射在基底上的唯一性。此外,讨论了线性映射的乘法性质和线性映射如何保持加法单位元不变。
摘要由CSDN通过智能技术生成

84e1c7497e3cf6653651410c8ba3fe8f.png

线性代数主要研究的对象是向量空间,但是真正令人着迷的是向量空间上的线性映射。

以下用

表示实数域
或者复数域
,用
表示
上的向量空间。

  • 定义:
    • 的线性映射是具有下列性质的函数
      • 加性(additivity)
        • 对所有
          ,都有
      • 齐性(homogeneity):
        • 对所有
          ,都有

注意,线性映射的标准记号跟以前学过的函数记号一样,表示为

,但有时为了方便也写作
  • 记号
    • 的所有线性映射构成的集合记为

下面来看看线性映射的一些例子。最好是当场验证一下这些确实是线性映射。

--------------------------------举例开始分割线-----------------------------------

零映射

为了清楚起见,我在这里用〇表示零映射(这可是一个汉字hhhhhh)。这个映射把响铃空间的元素都映到一个向量空间的加法单位元。确切地说,

定义如下:

不消说,这里的

中任意向量,也就是我偷懒了“
”。等式的右边是
向量空间
的加法单位元。

恒等映射

恒等映射是把每个元素都映到其自身的函数。确切地说,恒等映射

定义如下:

对多项式的微分

定义微分映射

如下:

这个映射显然是线性的,因为求导运算法则是线性的:对任意可微函数

和常数
,都有

这里虽然是对求微分的简单操作,但有一点值得注意。就是这个映射

操作的向量空间是
,也就是全体实系数多项式组成的空间,这个空间与知之子:向量空间的定义|线性代数漫步(三)中提到的
类似,里面的元素本身是某种映射。所以这个映射是
把映射映射为映射的映射。

058d3f46ac29a5092826324134768f8c.png

乘以

定义

如下:对所有的

定义

如下:

这是个从

映射到
的线性映射的例子。

那从这个自然可以想到,还可以定义从

的映射啊!比如说
。不过从几何直观上看,第二种映射好像有点奇怪。你说从
,我马上可以举出从三维空间到二维平面的投影这样很直观的例子,但是从
,平面投到三维空间,好像不够啊。我反正觉得这玩意儿很奇怪。这种奇怪感觉是有根据的,因为
到更大维数向量空间的线性映射不是满的:
  • 如果
    都是有限维向量空间,且
    的维数小于
    的维数,即
    ,那么
    的线性映射一定不是满射。

这个定理的证明与这篇文章的讨论主题无关,这里就不讲了。

---------------------------------------举例结束分割线---------------------------------------

下面是一个关于线性映射与定义域的基底的命题:

  • 的基底,
    ,则存在唯一一个对任意
    都有
  • 的线性映射

这个命题的存在性部分表明线性映射可根据其在某个基底上的取值来构造,而唯一性的部分表明线性映射可完全由这些取值确定。

还要明确一点,什么叫确定一个线性映射?线性映射反映的是线性空间之间的关系,总不能脱离空间中的元素而独立存在,结合元素去理解线性映射的性质会比较方便。确定

中的一个线性映射即是说,任给
中的一个元素
,都可以确定它在
中的像到底是哪个元素就行了
,这也正是证明的终点。

证明:

首先证明存在满足上述性质的线性映射

。定义
如下:

其中

中的任意元素。由于组
的基底,所以上面的等式中的源可以代表
中任意元素,而像由源唯一确定了。(注意并不要求
的基底,甚至可以不要求它们张成
,只要映射的像能够唯一确定就行,此时映射
也就确定了。)在上面的等式中,取某个
,并取其他系数为零,则有
。并且很容易证明,这个映射是线性映射。于是我们证明了满足命题中性质的线性映射的存在性。

为了证明唯一性,现在假设

,且
(这里能这么假设是因为已经证明了这样的线性映射是存在的,不然后面的都是空谈),仍设
。由
的齐次性,有
,由
的加性,有

上由上式唯一确定,又由于
的基底,
就是向量空间
,所以
上唯一确定。

上的代数运算

先在

上定义加法和标量乘法。
  • 定义
    上的加法和标量乘法
    • 。定义和
      还有积
      的两个线性映射,它们对所有
      都有

按照上面定义的加法和乘法,很容易验证

是一个向量空间。并且其中的加法单位元就是零映射。

一般的向量空间中两个元素的乘积没有啥意义,不过对于一对合适的线性映射却可以定义一种很有用的乘积。这种乘积需要第三个向量空间的参与,下设

上的向量空间。
  • 定义 线性映射的乘积
    • ,则定义乘积
      如下:

也就是说,

恰好就是通常的复合映射
。但是若两个映射都是线性的,一般我们都偷懒直接写成

c78945b06ad58074cdcd6c6f854cf8e7.gif
懒人

还应注意,只有当

能映到
的定义域时乘积
才有意义。

下面讲线性映射乘积的代数性质。这些性质的证明很简单,此处略去。

  • 结合性
    • 此处的三个映射都是线性映射,并且乘积都有意义(也就是说
      要映射到
      的定义域,
      要映射到
      的定义域)。
  • 单位元
    • 这里
      。这个等式中的第一个恒等映射
      上的恒等映射,而第二个恒等映射
      上的恒等映射,式子中加了下标以示区分。等式里面的这三个映射都是从
      的映射。
  • 分配性质
    • 这里

最后以一个简单但是很重要的结论来收尾吧:

  • 线性映射把加法单位元
    映为
    • 的线性映射,则
    • 证明:利用加性,有
      • 两端都加上
        的加法逆元,得到结论。
      • 注意结论中左边的
        中的加法单位元,右边的
        中的加法单位元。

5ad3b44504706ae845d924f02ca04f6e.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值