可由一个线性无关向量组线性表示的另一向量组的秩问题

文章证明了如果向量组[β1, β2, ..., βs]能被线性无关的向量组[α1, α2, ..., αr]线性表示,那么两向量组的秩相等。通过初等行变换和初等列变换的性质,以及初等矩阵的逆仍然是初等矩阵的原理,逐步分析得出结论。" 104889388,9193191,利用二分查找求解中位数问题,"['算法', '数据结构', '排序算法']
摘要由CSDN通过智能技术生成

索引

原问题

  向量组 [ β 1 β 2 ⋯ β s ] \left[ \begin{matrix} { {\beta }_{1}} & { {\beta }_{2}} & \cdots & { {\beta }_{s}} \\ \end{matrix} \right] [β1β2βs]可由线性无关的向量组 [ α 1 α 2 ⋯ α r ] \left[ \begin{matrix} { {\alpha }_{1}} & { {\alpha }_{2}} & \cdots & { {\alpha }_{r}} \\ \end{matrix} \right] [α1α2αr]线性表示,即有 [ β 1 β 2 ⋯ β s ] = [ α 1 α 2 ⋯ α r ] B , \left[ \begin{matrix} { {\beta }_{1}} & { {\beta }_{2}} & \cdots & { {\beta }_{s}} \\ \end{matrix} \right]=\left[ \begin{matrix} { {\alpha }_{1}} & { {\alpha }_{2}} & \cdots & { {\alpha }_{r}} \\ \end{matrix} \right]B, [β1β2βs]=[α1α2αr]B,
r a n k { [ β 1 β 2 ⋯ β s ] } = r a n k ( B ) . rank\left\{ \left[ \begin{matrix} { {\beta }_{1}} & { {\beta }_{2}} & \cdots & { {\beta }_{s}} \\ \end{matrix} \right] \right\}=rank\left( B \right). rank{ [β1β2βs]}=rank(B).

证明

  1. 引理1:矩阵的初等行变换和初等列变换不改变原矩阵的秩。
  2. 定义1:对单位矩阵 I I I进行一次初等变换后得到的矩阵称为初等矩阵。
  3. 引理2:对矩阵进行一次初等行(列)变换相当于在原矩阵左(右)边乘一个相应的初等矩阵。
  4. 引理3:初等矩阵的逆还是初等矩阵。

  首先对矩阵 B B B进行拆解。 B B B是一个 r × s r\times s r×s的矩阵。令 t = r a n k ( B ) ≤ min ⁡ { r , s } t=rank\left( B \right)\le \min \left\{ r,s \right\} t=rank(B)min{ r,s},则 B B B一定可以由矩阵 [ I t × t O t × ( s − t ) O ( r − t ) × t O ( r − t ) × ( s − t ) ] \left[ \begin{matrix} { {I}_{t\times t}} & { {O}_{t\times \left( s-t \right)}} \\ { {O}_{\left( r-t \right)\times t}} & { {O}_{\left( r-t \right)\times \left( s-t \right)}} \\ \end{matrix} \right] [It×tO(rt)×tOt×(st)O(rt)×(st)]经过有限的一系列初等行列变换得到,即存在初等矩阵 P 1 ( a ) ,   P 2 ( a ) , . . . , P m ( a ) ( a ) P_{1}^{\left( a \right)},\text{ }P_{2}^{\left( a \right)},...,P_{m\left( a \right)}^{\left( a \right)} P1(a), P2(a),...,Pm(a)(a) P 1 ( b ) ,   P 2 ( b ) , . . . , P m ( b ) ( b ) P_{1}^{\left( b \right)},\text{ }P_{2}^{\left( b \right)},...,P_{m\left( b \right)}^{\left( b \right)} P1(b), P2(b),...,Pm(b)(b),使得
B = ( ∑ i m ( a ) P i ( a ) ) [ I t × t O t × ( s − t ) O ( r − t ) × t O ( r − t ) × ( s − t ) ] ( ∑ i m ( b ) P i ( b ) ) . B=\left( \sum\limits_{i}^{m\left( a \right)}{P_{i}^{\left( a \right)}} \right)\left[ \begin{matrix} { {I}_{t\times t}} & { {O}_{t\times \left( s-t \right)}} \\ { {O}_{\left( r-t \right)\times t}} & { {O}_{\left( r-t \right)\times \left( s-t \right)}} \\ \end{matrix} \right]\left( \sum\limits_{i}^{m\left( b \right)}{P_{i}^{\left( b \right)}} \right). B=im(a)Pi(a)[It×tO

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值