原问题
向量组 [ β 1 β 2 ⋯ β s ] \left[ \begin{matrix} {
{\beta }_{1}} & {
{\beta }_{2}} & \cdots & {
{\beta }_{s}} \\ \end{matrix} \right] [β1β2⋯βs]可由线性无关的向量组 [ α 1 α 2 ⋯ α r ] \left[ \begin{matrix} {
{\alpha }_{1}} & {
{\alpha }_{2}} & \cdots & {
{\alpha }_{r}} \\ \end{matrix} \right] [α1α2⋯αr]线性表示,即有 [ β 1 β 2 ⋯ β s ] = [ α 1 α 2 ⋯ α r ] B , \left[ \begin{matrix} {
{\beta }_{1}} & {
{\beta }_{2}} & \cdots & {
{\beta }_{s}} \\ \end{matrix} \right]=\left[ \begin{matrix} {
{\alpha }_{1}} & {
{\alpha }_{2}} & \cdots & {
{\alpha }_{r}} \\ \end{matrix} \right]B, [β1β2⋯βs]=[α1α2⋯αr]B,则
r a n k { [ β 1 β 2 ⋯ β s ] } = r a n k ( B ) . rank\left\{ \left[ \begin{matrix} {
{\beta }_{1}} & {
{\beta }_{2}} & \cdots & {
{\beta }_{s}} \\ \end{matrix} \right] \right\}=rank\left( B \right). rank{
[β1β2⋯βs]}=rank(B).
证明
- 引理1:矩阵的初等行变换和初等列变换不改变原矩阵的秩。
- 定义1:对单位矩阵 I I I进行一次初等变换后得到的矩阵称为初等矩阵。
- 引理2:对矩阵进行一次初等行(列)变换相当于在原矩阵左(右)边乘一个相应的初等矩阵。
- 引理3:初等矩阵的逆还是初等矩阵。
首先对矩阵 B B B进行拆解。 B B B是一个 r × s r\times s r×s的矩阵。令 t = r a n k ( B ) ≤ min { r , s } t=rank\left( B \right)\le \min \left\{ r,s \right\} t=rank(B)≤min{
r,s},则 B B B一定可以由矩阵 [ I t × t O t × ( s − t ) O ( r − t ) × t O ( r − t ) × ( s − t ) ] \left[ \begin{matrix} {
{I}_{t\times t}} & {
{O}_{t\times \left( s-t \right)}} \\ {
{O}_{\left( r-t \right)\times t}} & {
{O}_{\left( r-t \right)\times \left( s-t \right)}} \\ \end{matrix} \right] [It×tO(r−t)×tOt×(s−t)O(r−t)×(s−t)]经过有限的一系列初等行列变换得到,即存在初等矩阵 P 1 ( a ) , P 2 ( a ) , . . . , P m ( a ) ( a ) P_{1}^{\left( a \right)},\text{ }P_{2}^{\left( a \right)},...,P_{m\left( a \right)}^{\left( a \right)} P1(a), P2(a),...,Pm(a)(a)和 P 1 ( b ) , P 2 ( b ) , . . . , P m ( b ) ( b ) P_{1}^{\left( b \right)},\text{ }P_{2}^{\left( b \right)},...,P_{m\left( b \right)}^{\left( b \right)} P1(b), P2(b),...,Pm(b)(b),使得
B = ( ∑ i m ( a ) P i ( a ) ) [ I t × t O t × ( s − t ) O ( r − t ) × t O ( r − t ) × ( s − t ) ] ( ∑ i m ( b ) P i ( b ) ) . B=\left( \sum\limits_{i}^{m\left( a \right)}{P_{i}^{\left( a \right)}} \right)\left[ \begin{matrix} {
{I}_{t\times t}} & {
{O}_{t\times \left( s-t \right)}} \\ {
{O}_{\left( r-t \right)\times t}} & {
{O}_{\left( r-t \right)\times \left( s-t \right)}} \\ \end{matrix} \right]\left( \sum\limits_{i}^{m\left( b \right)}{P_{i}^{\left( b \right)}} \right). B=⎝⎛i∑m(a)Pi(a)⎠⎞[It×tO