循环群的子群是循环群

循环群的子群是循环群.
 

证明:$m$阶循环群都与$(\mathbb{Z}_m,+)(m\geq 1)$同构,无限阶循环群都与$(\mathbb{Z},+)$同构,所以我们只要讨论$(\mathbb{Z}_m,+)$和$(\mathbb{Z},+)$就足够了.


对于$(\mathbb{Z}_m,+)$来说,当$m=1$时,$(\mathbb{Z}_m,+)=(0,+)$,其子群就是$(\{0\},+)$,当然是循环群.当$m>1$时,设该循环群的某一子群$H$有$k$个元素,分别为$a_{1}^{(1)},\cdots,a_{k}^{(1)}$.从这$k$个元素里取出两个相邻元素$a_i^{(1)},a_{i+1}^{(1)}$,求它们的最大公因数$a_i^{(2)}$,得到$k-1$个最大公因数$a_1^{(2)},\cdots,a_{k-1}^{(2)}$.我们有$\forall 1\leq i\leq k-1,a_i^{(2)}\in H$.这是因为根据贝祖定理,$\exists x,y\in \mathbb{Z}$,使得$xa_i^{(1)}+ya_{i+1}^{(1)}=a_i^{(2)}$.


然后我们把$a_1^{(2)},\cdots,a_{k-1}^{(2)}$进行与$a_{1}^{(1)},\cdots,a_{k}^{(1)}$同样的处理,得到$a_1^{(3)},\cdots,a_{k-2}^{(3)}$.这样子一直做下去,最终我们会得到一个$a_1^{(k)}$.$H$是由$a_1^{(k)}$生成的循环群(为什么?).


对于$(\mathbb{Z},+)$来说,论证和$(\mathbb{Z}_m,+)$类似.若$(\mathbb{Z},+)$的子群是$(\{0\},+)$,则显然这个子群是循环群.若这个子群里的元素多于一个,则该子群显然是无限群.把子群里的元素按从小到大排列$a_{1}^{(1)},\cdots,a_{k}^{(1)},\cdots$取相邻两个数的最大公约数,我们得到另一无限数列$a_{1}^{(2)},\cdots,a_{k-1}^{(2)}\cdots$这样子一直进行下去.我们知道,$a_{1}^{(2)}\geq \cdots\geq a_{1}^{(t)}\geq \cdots>0$

则容易得到$a_{1}^{(1)}, a_{1}^{(2)}, \cdots, a_{1}^{(t)} \cdots$这个无限数列中,必定只有有限个数不同,除了这有限个不同的数外,其余的数都相同(为什么?).那么,我们容易得到,所有的数其实都是某一个数的倍数.这个数就是$H$的生成元(为什么?),所以$H$是循环群.
 
 
注:以上命题证明了elementary methods in number theory 中的如下命题:
 

转载于:https://www.cnblogs.com/yeluqing/archive/2012/11/25/3828090.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
循环群的自同构群是交换群的证明如下: 首先,我们可以证明一个循环群的自同构群只能是一个循环群或者一个交换群。 假设 G 是一个循环群,生成元为 a。 对于任何一个自同构 f,由于 a 生成 G,所以 f(a) 一定也是 G 的生成元。也就是说,f(a) = a^n(n 为一个整数)。 又因为 f 是一个自同构,所以 f(a^k) = (f(a))^k = (a^n)^k = a^{nk}。 因此,f(a^k) = a^{nk},也就是说,f 通过对 G 中元素 a 的群运算操作得到了一个新的循环群,它已经被确定为由 a^n 生成。这意味着,G 和 f(G) 有相同的群结构。 所以,如果 G 是一个循环群,那么其自同构群必须由形如 f(a) = a^n 的自同构构成。这些自同构的组合可以用一个整数 n 来表示,因此自同构群是一个循环群。 现在考虑一个自同构群 M,即所有从 G 到 G 自身的群同构组成的集合。对于 M 中的任何两个元素 f 和 g,我们定义它们的乘积 f*g 为将 f 和 g 执行群运算之后得到的函数(即 f(g(x)))。 由于这个群的元素是群同构,因此它们可以像普通群一样进行乘法操作。如果 M 中的所有元素都是交换的,那么这个群就是交换群。 现在我们需要证明,循环群的自同构群只能是一个循环群或者一个交换群。 考虑循环群 G 和其自同构群 M。由上面的分析,M 中的所有元素都可以表示为 f(a) = a^n 的形式。因此, f*g(a) = f(g(a)) = f(a^m) = (a^m)^n = a^{mn} g*f(a) = g(f(a)) = g(a^n) = (a^n)^m = a^{nm} 因此,f*g(a) = g*f(a) = a^{mn},这意味着 f*g 和 g*f 也是 a^n 的某个倍数。因此,M 中的所有元素都是交换的,所以 M 是一个交换群。 因此,我们证明了循环群的自同构群只能是一个循环群或者一个交换群。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值