拉格朗日/循环群的子群都是子群


拉格朗日定理(J.Lagrange)

G G G 为有限群, A ≤ G A\le G AG .则
∣ G ∣ = ∣ A ∣ ⋅ [ G : A ] |G|=|A|\cdot[G:A] G=A[G:A]
特别的, G G G 的每个子群的阶都是 G G G 的阶的因子

证明

考虑右陪集分解:
G = ⋃ g ∈ R A g ( 两 两 不 交 的 并 ) G = \bigcup\limits_{g\in R}Ag\qquad(两两不交的并) G=gRAg(
对于 a , b ∈ A a,b\in A a,bA, 由消去律可知 a ≠ b    ⟺    a g ≠ b g a\ne b\iff ag\ne bg a=bag=bg .从而,对每个 g ∈ R g\in R gR, ∣ A g ∣ = ∣ A ∣ |Ag|=|A| Ag=A. 由右陪集分解式即知:
∣ G ∣ = ∑ g ∈ R ∣ A g ∣ = ∑ g ∈ R ∣ A ∣ = ∣ A ∣ ⋅ ∣ R ∣ = ∣ A ∣ ⋅ [ G : A ] |G|=\sum_{g\in R}|Ag|=\sum_{g\in R}|A|=|A|\cdot|R|=|A|\cdot[G:A] G=gRAg=gRA=AR=A[G:A]


循环群的子群均是循环群

G = ⟨ A ⟩ G=\langle A\rangle G=A 是循环群

  1. G G G 是无限循环群,则对每个正整数 m m m, G G G 恰有一个指数为 m m m 的子群 G m = ⟨ a m ⟩ G_m=\lang a^m\rang Gm=am,并且它们和 { 1 } \{1\} {1} G G G 的全部子群
  2. G G G n n n 阶有限循环群,则对 n n n 的每个正因子 m m m, G G G 恰有一个指数为 m m m n m \frac{n}{m} mn 阶子群 G m = ⟨ a m ⟩ G_m=\lang a^m\rang Gm=am, 并且它们是 G G G 的全部子群

证明

  1. H H H G = ⟨ a ⟩ G=\lang a\rang G=a 的子群,不妨设 H ≠ { 1 } H\ne\{1\} H={1} .令 m m m 是满足 a m ∈ H a^m\in H amH 的最小正整数.
    易知对每个整数 p p p, a p ∈ H    ⟺    m ∣ p a^p\in H\iff m|p apHmp. 于是 H = ⟨ a m ⟩ = G m H=\lang a^m\rang=G_m H=am=Gm. 并且 [ G : G m ] = m [G:G_m]=m [G:Gm]=m
    这就证明了1
  2. H H H G = ⟨ a ⟩ G=\lang a\rang G=a 的子群,不妨设 H ≠ { 1 } H\ne\{1\} H={1} .令 m m m 是满足 a m ∈ H a^m\in H amH 的最小正整数.
    易知对每个整数 p p p, a p ∈ H    ⟺    m ∣ p a^p\in H\iff m|p apHmp. 于是 H = ⟨ a m ⟩ = G m H=\lang a^m\rang=G_m H=am=Gm
    a a a 是一个 n n n 阶元素,则 m ∣ n m|n mn ,于是 n = m q n=mq n=mq ,从而 H = G m = { 1 , a m , a 2 m , ⋯   , a ( a − 1 ) m } H=G_m=\{1,a^m,a^{2m},\cdots,a^{(a-1)m}\} H=Gm={1,am,a2m,,a(a1)m}. 这是 q = n / m q=n/m q=n/m 阶循环群,从而 [ G : G m ] = ∣ G ∣ / ∣ G m ∣ = n / q = m [G:G_m]=|G|/|G_m|=n/q=m [G:Gm]=G/Gm=n/q=m
    这就证明了2
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值