MaskRCNN-Keypoints

这个月先写一篇吧,后面要复习数学考试了,可能到时候就忘了。今天写一个比较有意思的东西,关于人体的分割与姿态估计。如下图所示:image_1cv35vkc9fad1bnn1i7uhtkfl419.png-1375kB

图片选自mask rcnn的论文,这里由于时间的关系,就不多叙述技术细节了,网上有很多关于mask rcnn的博客,这里的keypoints是在mask rcnn上又添加了一个keypoints分支,总的模型结构图就变成如下形式了
image_1cv366eif1bjq1ad1nss1qtikpn1m.png-158.5kB

展示一下具体效果:
demo.gif-2857.6kB

我建了一个repo介绍如何对视频和图片进行如上处理,具体可以参考https://github.com/FangYang970206/MaskRCNN-Keypoint-Demo,没有GPU支持的同学可以通过google colab使用免费GPU进行试玩,链接如下https://colab.research.google.com/github/FangYang970206/MaskRCNN-Keypoint-Demo/blob/master/demo.ipynb

最后感谢chrispolo提供的pre-trained model和相关代码。

好了,就说这么多了,我去复习了,玩得开心~

转载于:https://www.cnblogs.com/fydeblog/p/10145805.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值