torchvision使用keypoint rcnn 进行人体关键点定位

系统:Windows 11

pytorch版本:1.11.0

torchvision版本:0.12.0

使用图片地址:vision/person1.jpg at main · pytorch/vision · GitHub

使用代码:


import torch
import torchvision.transforms
from torchvision.models.detection import keypointrcnn_resnet50_fpn
from torchvision.io import read_image

# person_int = read_image(str(Path("assets") / "person1.jpg"))
person_int = read_image(r"E:\git_rep\vision-0.12.0\gallery\assets\person1.jpg")

transforms1 = torchvision.transforms.ToPILImage()
transforms2 = torchvision.transforms.ToTensor()
person_float = transforms1(person_int)
person_float = transforms2(person_float)

model = keypointrcnn_resnet50_fpn(True, progress=False)
model = model.eval()

outputs = model([person_float])
print(outputs)

kpts = outputs[0]['keypoints']
scores = outputs[0]['scores']

print(kpts)
print(scores)

detect_threshold = 0.75
idx = torch.where(scores > detect_threshold)
keypoints = kpts[idx]

print(keypoints)


import torch
import numpy as np
import matplotlib.pyplot as plt

import torchvision.transforms.functional as F


plt.rcParams["savefig.bbox"] = 'tight'


def show(imgs):
    if not isinstance(imgs, list):
        imgs = [imgs]
    fig, axs = plt.subplots(ncols=len(imgs), squeeze=False)
    for i, img in enumerate(imgs):
        img = img.detach()
        img = F.to_pil_image(img)
        axs[0, i].imshow(np.asarray(img))
        axs[0, i].set(xticklabels=[], yticklabels=[], xticks=[], yticks=[])

from torchvision.utils import draw_keypoints

res = draw_keypoints(person_int, keypoints, colors="blue", radius=3)
show(res)

结果:

 

参考文献:

1.keypointrcnn_resnet50_fpn — Torchvision 0.13 documentation

2.Visualization utilities — Torchvision 0.13 documentation

3.Models and pre-trained weights — Torchvision 0.13 documentation

4.人体关键点检测(Keypoints Detection)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值