凸优化(三)凸集变换与凸函数

1. 概述

\(\quad\)之前介绍了凸集相关的定义与部分性质,其实不是特别完全,因为单单的几篇博客是无法把凸集这一块完全讲全的,所以凸集变换这里也只讲几个稍微重要的变换。来捋一下学习的脉络吧,凸问题由求解变量、约束与目标函数组成,其中变量的可行域必须是凸集。所以下面要介绍的就是涉及到约束和目标函数的凸函数了。至于求解这个以后会说相关的经典算法的。

2. 集合变换:

(1)仿射变换:定义为对于凸集\(X\),进行线性变换\(\{AX+b,X\in R^n,A\in R_{m\times n},b\in R^m\},得到的集合仍旧是凸集\),可以看出集合X在维数变换后仍旧是凸集,通俗地来讲,对一个集合进行拉伸和位移不会改变凸性,比如说在上节已经提到的球进行拉伸成椭球,依旧是凸集。

(2)透视变换,假设有集合\(\{[Z,T],T\nleq0,Z\in R^n,T\in R\}\),则经过如下变换:\(\{[Z/T],T\nleq0,Z\in R^n,T\in R\}\)得到的集合仍为凸集。实际上是一种降维操作了,通俗地解释也可以做到,看一下这张图:透视变换

假设在二维平面上过一点\((x_1,x_2)\)做一条过原点的直线,显然直线方程为\(x_2x-x_1y=0\),然后做一条\(y=-1\)的直线,它们会交于点\(K(-\frac{x_1}{x_2},-1)\)处。那么透视变换的含义是啥呢?就是将\((x_1,x_2)\)经过原点映射到\(K(-\frac{x_1}{x_2},-1)\)点。实现了一次降维,这样得到的集合仍旧为凸集。

(3)线性分数函数:对于集合X为凸集,在经过以下变换之后,其结果仍为凸集:\[f(x)=\frac{AX+b}{c^TX+d},dom f=\{X|c^TX+d\nleq0\}\]说明一下,这里是非常常用的变换技巧,因为显然这个变换是个非线性变换,但是得到的集合却仍旧是凸集。用到了两个变换性质,第一就是仿射变换,仿射变换是对凸集进行线性变换后仍旧是凸集,即\(\{AX+b,X\in R^n,A\in R_{m\times n},b\in R^m\}\)。然后又进行了透视变换,即将一个\(R^{n+1}=[Z,T],T\nleq 0\)的凸集,它有一维数据大于0,然后对其Z的数据除以T,进行降维处理得到的仍旧是凸集。

举个例子:在本科的概率与统计课程中有这样的例子,两个随机变量\(u,v\)的联合概率\(\rightarrow\)条件概率的映射

联合概率:\(P_{ij}=P(u=i,v=j)\),条件概率:\(f_{ij}=P(u=i|v=j)=\frac{P_{ij}}{\sum^n_{k=1}P_{kj}}\),其实这个条件映射是一个线性分数映射,大家可以想想看哪个集合充当了X的集合,又是怎样的变换。这里给出解释:就是将\([P_{1j},P_{2j},...,P_{nj}]^T\)向量作为X,分母作为向量的求和,分子则是与这样的向量作了内积:\([0,...,1,...,0]\),只有\(i\)处为1的向量。

3. 凸函数

3.1 定义

如果X为在实数向量空间的凸集。并且有映射\(f:X\rightarrow R\),如果\(f\)被称为,则有\[\forall x_1,x_2\in X,\forall t\in[0,1]: f(tx_1+(1-t)x_2)\leq tf(x_1)+(1-t)f(x_2).\]如果F被称为严格凸,那么有:\[\forall x_1\ne x_2\in X,\forall t\in(0,1): f(tx_1+(1-t)x_2)\ngeq tf(x_1)+(1-t)f(x_2).\]

3.2 保持凸性的操作

和之前介绍的集合变换有相通的地方,但是是对函数映射的操作。

3.2.1取负操作

\(f\)为凸函数的时候,\(-f\)为凹函数。

3.2.2非负加权和

即存在参数向量\(w=[w_1,w_2,...,w_n]\geq0,f_1,f_2...f_n\)为凸的,那么\(w_1f_1+...w_nf_n\)也为凸函数,特殊的情况就是,有限个凸函数的和为凸函数。(也可以拓展到无限和,积分和期望值(存在的话))

3.2.3元素最大值

\(\{f_i\}_{i\in I}\)是凸函数的集合。得到新函数\(g(x)=sup_{i\in I}f_i(x)\)仍旧为凸函数,这个性质挺重要的,有以下两个特殊情况:

(1)若\(f_1,f_2...f_n\)为凸函数,则\(g(x)=max\{f_1(x),f_2(x)...f_n(x)\}\)r仍为凸函数。

(2)若\(f(x,y)\)在以x为自变量时为凸函数,那么\(g(x)=sup_{y\in C}f_i(x)\)也以x为自变量为凸函数,即使C不是凸集。

3.2.4组合函数

(1)若\(f和g\)是凸函数并且\(g\)在单变量域上不见效,那么\(h(x)=g(f(x))\)也是凸函数。比如当\(g(x)=e^x\)时,\(f\)为凸函数,那么\(e^{f(x)}\)也是凸函数,因为\(e^x\)单调且为凸函数。

(2)经过仿射变换下(具体见2集合变换)的凸函数仍为凸函数。

3.2.5最小化

\(f(x,y)\)\(x,y\)组成的定义域内为凸函数,那么\(g(x)=inf_{y\in C}f(x,y)\)在单变量x上为凸函数,但是要满足C是凸集,且\(g(x)\neq\infty\)

转载于:https://www.cnblogs.com/saysei/p/10133582.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值