【第1章】凸集——保凸运算


Date: 2020/05/05
Editor:萧潇子(Jesse)
Contact: 1223167600@qq.com


3.保凸运算

本节给出一些典型的保凸运算,利用这些保凸运算,可以从凸集构造出其他凸集.这些运算与上一节中给出的凸集例子一起构成凸集的演算,可以用来确定或者构建集合的凸性.

3.1交集

S 1 , S 2 S_1,S_2 S1,S2为凸集,则 S 1 ⋂ S 2 S_1 \bigcap S_2 S1S2为凸

S a S_a Sa为凸集, ∀ a ∈ A \forall a\in A aA ⋂ a ∈ A S a \mathop{\bigcap} \limits_{a\in A} S_a aASa为凸集

3.2仿射函数

关于仿射变换解释可参考这篇博文https://blog.csdn.net/blogshinelee/article/details/90675178

f :   R n → R m f:\:R^n \rightarrow R^m f:RnRm是仿射的,当 f ( S ) = A X + b \color{red} f(S)=AX+b f(S)=AX+b, A ∈ R m × n A\in R^{m\times n} ARm×n, b ∈ R m b\in R^m bRm

S ∈ R n S\in R^n SRn为凸集, f :   R n → R m f:\:R^n \rightarrow R^m f:RnRm仿射,则 f ( S ) = { f ( X ) ∣ X ∈ S } f(S)=\{f(X)|X\in S \} f(S)={f(X)XS}为凸集

n n n维空间中的凸集 S S S经过线性变换变成 m m m维空间中的凸集 f ( S ) f(S) f(S)

逆仿射映射

g :   R k → R n g:\:R^k \rightarrow R^n g:RkRn为仿射, g − 1 ( S ) = { X ∣ f ( X ) ∈ S } g^{-1}(S)=\{X|f(X) \in S\} g1(S)={Xf(X)S}

e.g.

缩放与移位是保持凸性的

缩放: α S = { α X ∣ X ∈ S } \alpha S=\{\alpha X|X\in S\} αS={αXXS}

移位: S + a = { X + a ∣ X ∈ S } S+a=\{X+a|X\in S\} S+a={X+aXS}

两个凸集的和是凸的:

S 1 + S 2 = { x + y ∣ x ∈ S 1 , y ∈ S 2 } S_1+S_2=\{x+y|x\in S_1, y\in S_2\} S1+S2={x+yxS1,yS2}

定义 S 1 × S 2 = { ( x , y ) ∣ x ∈ S 1 , y ∈ S 2 } S_1\times S_2=\{(x,y)|x\in S_1, y\in S_2\} S1×S2={(x,y)xS1,yS2}

假定 x ∈ R , y ∈ R x\in R,y\in R xR,yR, 线性变换 f ( x , y ) = x + y f(x,y)=x+y f(x,y)=x+y,因此两个凸集的和还是凸集

线性矩阵不等式 LMT 解集也是凸集

B , A i , X i ∈ S m B,A_i,X_i\in S^m B,Ai,XiSm 对称矩阵

定义函数: A ( X ) = X 1 A 1 + ⋯ + X n A n ⪯ B A(X)=X_1A_1+\cdots+X_nA_n\preceq B A(X)=X1A1++XnAnB 表示 ( A ( X ) − B ) ⪯ 0 (A(X)-B)\preceq 0 (A(X)B)0半负定矩阵

证明 { X ∣ A ( X ) ⪯ B } \{X|A(X)\preceq B\} {XA(X)B}为凸 X X X由很多对称矩阵 X i X_i Xi构成

首先定义仿射变换 f ( X ) ≜ B − A ( X ) f(X) \triangleq B-A(X) f(X)BA(X) ⇒ \Rightarrow 由高维矩阵变换到低维矩阵空间

f ( X ) f(X) f(X)每个点是由多个矩阵$X_i 构 成 , 构成, B-A(X)$每个点是一个矩阵

f − 1 ( S + n ) = { X ∣ B − A ( X ) ⪰ 0 } f^{-1}(S_+^n)=\{X|B-A(X) \succeq 0\} f1(S+n)={XBA(X)0}

S + n S_+^n S+n为凸,经过 f − 1 ( S + n ) f^{-1}(S_+^n) f1(S+n)逆仿射映射 { X ∣ B − A ( X ) ⪰ 0 } \{X|B-A(X) \succeq 0\} {XBA(X)0}也为凸

由于 B − A ( X ) B-A(X) BA(X)为凸, 也即 f ( X ) f(X) f(X)也是凸的, f ( X ) f(X) f(X)逆运算符合仿射运算,所以其解集 { X ∣ A ( X ) ⪯ B } \{X|A(X)\preceq B\} {XA(X)B}为凸

椭球是球的仿射映射
ξ ( x c , P ) = { x   ∣ ( x − x c T ) P − 1 ( x − x c )   ≤ 1 } x c ∈ R n P ∈ S + + n ( 对 称 正 定 矩 阵 几 何 ) \xi(x_c,P)=\{x\:| (x-x_c^T)P^{-1}(x-x_c) \:\le 1\} \qquad x_c\in R^n \quad P\in S_{++}^{n}(对称正定矩阵几何) ξ(xc,P)={x(xxcT)P1(xxc)1}xcRnPS++n()

单位球 { u   ∣ ∥ u ∥ 2 ≤ 1 } \{u\: |\parallel u \parallel _2 \le 1\} {uu21}

仿射函数 f ( u ) = P 1 2 u + x c f(u)=P^{\frac{1}{2}} u+x_c f(u)=P21u+xc 其中 ( P 1 2 ) ( P 1 2 ) = P (P^{\frac{1}{2}})(P^{\frac{1}{2}})=P (P21)(P21)=P

{ f ( u )   ∣ ∥ u ∥ 2 ≤ 1 } = { P 1 2 u + x c   ∣ ∥ u ∥ 2 ≤ 1 } \{f(u)\:|\parallel u \parallel _2 \le 1\}= \{P^{\frac{1}{2}} u+x_c\:|\parallel u \parallel _2 \le 1\} {f(u)u21}={P21u+xcu21} 定义 x = P 1 2 u + x c ⇔ u = P − 1 2 ( x − x c ) x=P^{\frac{1}{2}} u+x_c\Leftrightarrow u=P^{-\frac{1}{2}}(x-x_c) x=P21u+xcu=P21(xxc)

⇒ \Rightarrow { x   ∣ ∥ P − 1 2 ( x − x c ) ∥ 2 ≤ 1 } \{x\: |\parallel P^{-\frac{1}{2}}(x-x_c) \parallel _2 \le 1\} {xP21(xxc)21}

⇒ \Rightarrow { x   ∣ ( x − x c ) T P − 1 ( x − x c ) ≤ 1 } \{x\: |(x-x_c)^T P^{-1} (x-x_c) \le 1\} {x(xxc)TP1(xxc)1}

3.3透视函数

P R n + 1 → R n P\quad R^{n+1} \rightarrow R^{n} PRn+1Rn 定义域 :dom P = R n × R + + P=R^n \times R_{++} P=Rn×R++ 前n个元素可以在实空间里面任意取值,最后一个元素必须要是正数

定义: P ( Z , t ) = Z t Z ∈ R n t ∈ R + + P(Z,t)=\frac{Z}{t} \quad Z\in R^n \quad t\in R_{++} P(Z,t)=tZZRntR++

二维情况下点 ( x 1 , x 2 ) (x_1,x_2) (x1,x2) 透过原点与直线 x 2 = − 1 x_2=-1 x2=1 的交点 ( − x 1 x 2 , − 1 ) = ( − P ( x 1 , x 2 ) , − 1 ) (-\frac{x_1}{x_2},-1)=(-P(x_1,x_2),-1) (x2x1,1)=(P(x1,x2),1)

这里先给出几何意义的解释,可以使用简单的小孔成像原理去理解这个过程,投影的小孔为原点,成像平面为 x 2 = − 1 x_2=-1 x2=1,二维平面上的点经过投影变成一维直线上的点,如下图所示:
在这里插入图片描述

凸集经过透视函数也是凸集

考虑 R n + 1 R^{n+1} Rn+1内线段 x = ( x ~ ∈ R n , x n + 1 ∈ R + + ) x=(\mathop{\tilde{x}}\limits_{\in R^n},\mathop{x_{n+1}}\limits_{\in R_{++}}) x=(Rnx~,R++xn+1) y = ( y ~ ∈ R n , y n + 1 ∈ R + + ) y=(\mathop{\tilde{y}}\limits_{\in R^n},\mathop{y_{n+1}}\limits_{\in R_{++}}) y=(Rny~,R++yn+1)

1 ≥ θ ≥ 0 1 \ge\theta \ge 0 1θ0 线段为 θ x + ( 1 − θ ) y \theta x+(1-\theta)y θx+(1θ)y

证明 线段 经过透视函数 还是线段

x → P P ( x ) x \mathop{\rightarrow} \limits^P P(x) xPP(x) y → P P ( y ) y \mathop{\rightarrow} \limits^P P(y) yPP(y)

θ x + ( 1 − θ ) y → P P ( θ x + ( 1 − θ ) y ) \theta x+(1-\theta)y \mathop{\rightarrow} \limits^P P(\theta x+(1-\theta)y) θx+(1θ)yPP(θx+(1θ)y)
P ( θ x + ( 1 − θ ) y ) = θ x ~ + ( 1 − θ ) y ~ θ x n + ( 1 − θ ) y n + 1 = θ x n + 1 θ x n + 1 + ( 1 − θ ) y n + 1 x ~ x n + 1 + ( 1 − θ ) y n + 1 θ x n + 1 + ( 1 − θ ) y n + 1 y ~ y n + 1 = μ P ( x ) + ( 1 − μ ) P ( y ) 1 ≥ μ ≥ 0 \begin{aligned} P(\theta x+(1-\theta)y)& = \frac{\theta \tilde{x} + (1-\theta) \tilde{y}}{\theta x_n + (1-\theta)y_{n+1}}\\ &=\frac{\theta x_{n+1}}{\theta x_{n+1}+(1-\theta)y_{n+1}}\frac{\tilde{x}}{x_{n+1}} + \frac{(1-\theta) y_{n+1}}{\theta x_{n+1}+(1-\theta)y_{n+1}}\frac{\tilde{y}}{y_{n+1}}\\ &=\mu P(x)+(1-\mu)P(y) \qquad 1 \ge\mu \ge 0 \end{aligned} P(θx+(1θ)y)=θxn+(1θ)yn+1θx~+(1θ)y~=θxn+1+(1θ)yn+1θxn+1xn+1x~+θxn+1+(1θ)yn+1(1θ)yn+1yn+1y~=μP(x)+(1μ)P(y)1μ0
θ , μ \theta, \mu θ,μ一一映射

任意凸集的反透视函数仍是凸集
P − 1 ( C ) = { ( x , t ) ∈ R n + 1 ∣ x t ∈ C , t > 0 } P^{-1}(C)=\{(x,t)\in R^{n+1}|\frac{x}{t} \in C, \quad t>0\} P1(C)={(x,t)Rn+1txC,t>0}
考虑 ( x , t ) ∈ P − 1 ( C ) (x,t)\in P^{-1}(C) (x,t)P1(C) ( y , s ) ∈ P − 1 ( C ) (y,s)\in P^{-1}(C) (y,s)P1(C) 0 ≤ θ ≤ 1 0\le \theta \le 1 0θ1

证明 ( θ x + ( 1 − θ ) y , θ t + ( 1 − θ ) s ) ∈ P − 1 C (\theta x+(1-\theta)y, \theta t+(1-\theta)s) \in P^{-1}C (θx+(1θ)y,θt+(1θ)s)P1C 也就是要证明 :
θ x + ( 1 − θ ) y θ t + ( 1 − θ ) s ∈ C \frac{\theta x+(1-\theta)y} {\theta t+(1-\theta)s} \in C θt+(1θ)sθx+(1θ)yC

θ x + ( 1 − θ ) y θ t + ( 1 − θ ) s = θ t θ t + ( 1 − θ ) s x t + ( 1 − θ t θ t + ( 1 − θ ) s ) y s = μ x t ∈ C + ( 1 − μ ) y s ∈ C ⇒ ∈ C \begin{aligned} \frac{\theta x+(1-\theta)y} {\theta t+(1-\theta)s} &=\frac{\theta t}{\theta t+(1-\theta)s} \frac{x}{t} + (1-\frac{\theta t}{\theta t+(1-\theta)s})\frac{y}{s}\\ &=\mu \mathop{\frac{x}{t}}\limits_{\in C} + (1-\mu)\mathop{\frac{y}{s}}\limits_{\in C} \\ \Rightarrow \in C \end{aligned} θt+(1θ)sθx+(1θ)yC=θt+(1θ)sθttx+(1θt+(1θ)sθt)sy=μCtx+(1μ)Csy

3.4 线性分数函数(转换后凸性质不变)

线性分式函数由透视函数和仿射函数复合而成

g: R n → R m + 1 R^n \rightarrow R^{m+1} RnRm+1为仿射映射
g ( x ) = [ A C + ] x + [ b d ] g(x)= \begin{bmatrix} A \\[0.3em] C^+ \end{bmatrix} x + \begin{bmatrix} b \\[0.3em] d \end{bmatrix} g(x)=[AC+]x+[bd]
其中 A ∈ R m × n , C ∈ R n , b ∈ R m , d ∈ R A\in R^{m\times n},C\in R^{n}, b\in R^{m}, d\in R ARm×n,CRn,bRm,dR

P: R m + 1 → R m R^{m+1}\rightarrow R^m Rm+1Rm 透视函数

f : R n → R m ≜ P ∘ g f:\quad R^n \rightarrow R^m \triangleq P\circ g f:RnRmPg

线性分数函数:
f ( x ) = A x + b C T x + d d o m f = { x ∣ C T x + d > 0 } f(x)=\frac{Ax+b}{C^Tx+d}\quad domf=\{x|C^Tx+d>0\} f(x)=CTx+dAx+bdomf={xCTx+d>0}
例: 两个随机变量的联合概率 → \rightarrow 条件概率

u u u v v v { 1 ⋯ n } \{1 \cdots n\} {1n} { 1 ⋯ m } \{1 \cdots m\} {1m}

联合概率 P i , j = P ( u = i , v = i ) P_{i,j}=P(u=i,v=i) Pi,j=P(u=i,v=i)

条件概率 f i j = P ( u = i ∣ v = j ) f_{ij}=P(u=i|v=j) fij=P(u=iv=j)

∵ f i j = P i j ∑ k = 1 n P k j → [ 0 ⋯ 1 ⋯ 0 ] → 点 乘 下 面 向 量 [ P 1 , j , ⋯   , P n , j ] → 向 量 相 加 分 子 分 母 满 足 线 性 变 换 \because f_{ij}=\frac{P_{ij}}{\sum^n_{k=1}P_{kj}} \rightarrow \frac{[0 \cdots 1\cdots 0]\rightarrow 点乘下面向量}{[P_{1,j},\cdots,P_{n,j}] \rightarrow 向量相加} \quad 分子分母满足线性变换 fij=k=1nPkjPij[P1,j,,Pn,j][010]线

从高维变成标量

3.5参考

1、Stephen Boyd 、Lieven Vandenberghe——《Convex Optimization》)
2、中科大凌青凸优化 (https://www.bilibili.com/video/BV1Jt411p7jE?)

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值