import pandas as pd import numpy as np df = pd.read_csv('./zue_164466.csv') df['ptdate'] = pd.to_datetime(df['ptdate'],format='%Y-%m-%d') df['dateDiff'] = pd.to_datetime('today')-df['ptdate'] df['dateDiff'] = df['dateDiff'].dt.days R_Agg = df.groupby(by=['user_email','product_name'])['dateDiff'].agg({'RecencyAgg': np.min}) F_Agg = df.groupby(by=['user_email','product_name'])['ptdate'].agg({'FrequencyAgg': np.size}) M_Agg = df.groupby(by=['user_email','product_name'])['totalcost'].agg({'MonetaryAgg': np.sum}) aggData = R_Agg.join(F_Agg).join(M_Agg) bins = aggData.RecencyAgg.quantile(q=[0, 0.2, 0.4, 0.6, 0.8, 1],interpolation='nearest') bins[0] = 0 labels = [5, 4, 3, 2, 1] R_S = pd.cut(aggData.RecencyAgg, bins, labels=labels) # bins = aggData.FrequencyAgg.quantile(q=[0, 0.2, 0.4, 0.6, 0.8, 1],interpolation='nearest') bins[0] = 0 labels = [1, 2, 3, 4, 5] F_S = pd.cut(aggData.FrequencyAgg, bins, labels=labels) bins = aggData.MonetaryAgg.quantile(q=[0, 0.2, 0.4, 0.6, 0.8, 1],interpolation='nearest') bins[0] = 0 labels = [1, 2, 3, 4, 5] M_S = pd.cut(aggData.MonetaryAgg,bins, labels=labels) aggData['R_S']=R_S aggData['F_S']=F_S aggData['M_S']=M_S aggData['RFM'] = 100*R_S.astype(int) + 10*F_S.astype(int) + 1*M_S.astype(int) bins = aggData.RFM.quantile(q=[0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1],interpolation='nearest') bins[0] = 0 labels = [1, 2, 3, 4, 5, 6, 7, 8] aggData['level'] = pd.cut(aggData.RFM, bins, labels=labels) aggData = aggData.reset_index() fe = aggData.sort_values(['level', 'RFM'], ascending=[0, 0]) dd=aggData.groupby(by=['level'])['user_email','product_name'].agg({'size':np.size}) print(fe.head()) fe.to_csv('./rfm_data.csv',index=False) print("---------------") print(dd)
# -*- coding: utf-8 -*- ''' 描述:案例-基于RFM的用户价值度模型 程序输入:sales.csv 程序输出:RFM得分数据写本地文件sales_rfm_score.csv和数据表(sales_rfm_score) ''' # 导入库 import time # 导入时间库 import numpy as np # 导入numpy库 import pandas as pd # 导入pandas库 import mysql.connector # 导入mysql连接库 # 读取数据 dtypes = {'ORDERDATE': object, 'ORDERID': object, 'AMOUNTINFO': np.float32} # 设置每列数据类型 raw_data = pd.read_csv('sales.csv', dtype=dtypes, index_col='USERID') # 读取数据文件 # 数据审查和校验 # 数据概览 print ('Data Overview:') print (raw_data.head(4)) # 打印原始数据前4条 print ('-' * 30) print ('Data DESC:') print (raw_data.describe()) # 打印原始数据基本描述性信息 print ('-' * 60) # 缺失值审查 na_cols = raw_data.isnull().any(axis=0) # 查看每一列是否具有缺失值 print ('NA Cols:') print (na_cols) # 查看具有缺失值的列 print ('-' * 30) na_lines = raw_data.isnull().any(axis=1) # 查看每一行是否具有缺失值 print ('NA Recors:') print ('Total number of NA lines is: {0}'.format(na_lines.sum())) # 查看具有缺失值的行总记录数 print (raw_data[na_lines]) # 只查看具有缺失值的行信息 print ('-' * 60) # 数据异常、格式转换和处理 # 异常值处理 sales_data = raw_data.dropna() # 丢弃带有缺失值的行记录 sales_data = sales_data[sales_data['AMOUNTINFO'] > 1] # 丢弃订单金额<=1的记录 # 日期格式转换 sales_data['ORDERDATE'] = pd.to_datetime(sales_data['ORDERDATE'], format='%Y-%m-%d') # 将字符串转换为日期格式 print ('Raw Dtypes:') print (sales_data.dtypes) # 打印输出数据框所有列的数据类型 print ('-' * 60) # 数据转换 recency_value = sales_data['ORDERDATE'].groupby(sales_data.index).max() # 计算原始最近一次订单时间 frequency_value = sales_data['ORDERDATE'].groupby(sales_data.index).count() # 计算原始订单频率 monetary_value = sales_data['AMOUNTINFO'].groupby(sales_data.index).sum() # 计算原始订单总金额 # 计算RFM得分 # 分别计算R、F、M得分 deadline_date = pd.datetime(2017, 01, 01) # 指定一个时间节点,用于计算其他时间与该时间的距离 r_interval = (deadline_date - recency_value).dt.days # 计算R间隔 r_score = pd.cut(r_interval, 5, labels=[5, 4, 3, 2, 1]) # 计算R得分 f_score = pd.cut(frequency_value, 5, labels=[1, 2, 3, 4, 5]) # 计算F得分 m_score = pd.cut(monetary_value, 5, labels=[1, 2, 3, 4, 5]) # 计算M得分 # R、F、M数据合并 rfm_list = [r_score, f_score, m_score] # 将r、f、m三个维度组成列表 rfm_cols = ['r_score', 'f_score', 'm_score'] # 设置r、f、m三个维度列名 rfm_pd = pd.DataFrame(np.array(rfm_list).transpose(), dtype=np.int32, columns=rfm_cols, index=frequency_value.index) # 建立r、f、m数据框 print ('RFM Score Overview:') print (rfm_pd.head(4)) print ('-' * 60) # 计算RFM总得分 # 方法一:加权得分 rfm_pd['rfm_wscore'] = rfm_pd['r_score'] * 0.6 + rfm_pd['f_score'] * 0.3 + rfm_pd['m_score'] * 0.1 # 方法二:RFM组合 rfm_pd_tmp = rfm_pd.copy() rfm_pd_tmp['r_score'] = rfm_pd_tmp['r_score'].astype('string') rfm_pd_tmp['f_score'] = rfm_pd_tmp['f_score'].astype('string') rfm_pd_tmp['m_score'] = rfm_pd_tmp['m_score'].astype('string') rfm_pd['rfm_comb'] = rfm_pd_tmp['r_score'].str.cat(rfm_pd_tmp['f_score']).str.cat(rfm_pd_tmp['m_score']) # 打印输出和保存结果 # 打印结果 print ('Final RFM Scores Overview:') print (rfm_pd.head(4)) # 打印数据前4项结果 print ('-' * 30) print ('Final RFM Scores DESC:') print (rfm_pd.describe()) # 保存RFM得分到本地文件 rfm_pd.to_csv('sales_rfm_score.csv') # 保存数据为csv # 保存RFM得分到MySQL数据库 # 设置要写库的数据库连接信息 table_name = 'sales_rfm_score' # 要写库的表名 # 数据库基本信息 config = {'host': '127.0.0.1', # 默认127.0.0.1 'user': 'root', # 用户名 'password': '123456', # 密码 'port': 3306, # 端口,默认为3306 'database': 'python_data', # 数据库名称 'charset': 'gb2312' # 字符编码 } con = mysql.connector.connect(**config) # 建立mysql连接 cursor = con.cursor() # 获得游标 # 查找数据库是否存在目标表,如果没有则新建 cursor.execute("show tables") # table_object = cursor.fetchall() # 通过fetchall方法获得所有数据 table_list = [] # 创建库列表 for t in table_object: # 循环读出所有库 table_list.append(t[0]) # 每个每个库追加到列表 if not table_name in table_list: # 如果目标表没有创建 cursor.execute(''' CREATE TABLE %s ( userid VARCHAR(20), r_score int(2), f_score int(2), m_score int(2), rfm_wscore DECIMAL(10,2), rfm_comb VARCHAR(10), insert_date VARCHAR(20) )ENGINE=InnoDB DEFAULT CHARSET=gb2312 ''' % table_name) # 创建新表 # 将数据写入数据库 user_id = rfm_pd.index # 索引列 rfm_wscore = rfm_pd['rfm_wscore'] # RFM加权得分列 rfm_comb = rfm_pd['rfm_comb'] # RFM组合得分列 timestamp = time.strftime('%Y-%m-%d', time.localtime(time.time())) # 写库日期 print ('Begin to insert data into table {0}...'.format(table_name)) # 输出开始写库的提示信息 for i in range(rfm_pd.shape[0]): # 设置循环次数并依次循环 insert_sql = "INSERT INTO `%s` VALUES ('%s',%s,%s,%s,%s,'%s','%s')" % \ (table_name, user_id[i], r_score.iloc[i], f_score.iloc[i], m_score.iloc[i], rfm_wscore.iloc[i], rfm_comb.iloc[i], timestamp) # 写库SQL依据 cursor.execute(insert_sql) # 执行SQL语句,execute函数里面要用双引号 con.commit() # 提交命令 cursor.close() # 关闭游标 con.close() # 关闭数据库连接 print ('Finish inserting, total records is: %d' % (i + 1)) # 打印写库结果
第三版
import pandas as pd import numpy as np df = pd.read_excel('./zue_edu.xlsx',sheet_name='Q2未消费的',index_col='user_id') df['ptdate'] = pd.to_datetime(df['ptdate'],format='%Y-%m-%d') recency_value = df['ptdate'].groupby(df['product_name']).max() # 计算原始最近一次订单时间 r_interval = (pd.to_datetime('2019-05-06',format='%Y-%m-%d') - recency_value).dt.days # 计算R间隔 frequency_value = df['ptdate'].groupby([df['user_email'],df['product_name']]).count() # 计算原始订单频率 monetary_value = df['cost'].groupby(df['product_name']).sum() # 计算原始订单总金额 frequency_value = frequency_value.groupby('product_name').max() data_list = [recency_value,r_interval, frequency_value, monetary_value] data_pd = pd.DataFrame(np.array(data_list).transpose(), columns=['上次消费时间','已停投天数', '有消费天数', '消费金额'] , index=frequency_value.index) # 建立原始数据框 # 计算RFM得分 # 分别计算R、F、M得分 r_score = pd.cut(r_interval, 5, labels=[5, 4, 3, 2, 1]) # 计算R得分 f_score = pd.cut(frequency_value, 5, labels=[1, 2, 3, 4, 5]) # 计算F得分 m_score = pd.cut(monetary_value, 5, labels=[1, 2, 3, 4, 5]) # 计算M得分 # R、F、M数据合并 rfm_list = [r_score, f_score, m_score] # 将r、f、m三个维度组成列表 rfm_cols = ['r_score', 'f_score', 'm_score'] # 设置r、f、m三个维度列名 rfm_pd = pd.DataFrame(np.array(rfm_list).transpose(), dtype=np.int32, columns=rfm_cols, index=frequency_value.index) # 建立r、f、m数据框 # 计算RFM总得分 # 方法一:加权得分 rfm_pd['rfm_wscore'] = rfm_pd['r_score'] * 0.6 + rfm_pd['f_score'] * 0.3 + rfm_pd['m_score'] * 0.1 # 方法二:RFM组合 rfm_pd_tmp = rfm_pd.copy() rfm_pd_tmp['r_score'] = rfm_pd_tmp['r_score'].astype('str') rfm_pd_tmp['f_score'] = rfm_pd_tmp['f_score'].astype('str') rfm_pd_tmp['m_score'] = rfm_pd_tmp['m_score'].astype('str') rfm_pd['rfm_comb'] = rfm_pd_tmp['r_score'].str.cat(rfm_pd_tmp['f_score']).str.cat(rfm_pd_tmp['m_score']) rfm_pd['rfm_comb'] = rfm_pd['rfm_comb'].astype('int') rfm_pd['最近级别'] = rfm_pd['r_score'].replace({5:'优',4:'良',3:'一般',2:'差',1:'非常差'}) rfm_pd['频次'] = rfm_pd['f_score'].replace({5:'优',4:'良',3:'一般',2:'差',1:'非常差'}) rfm_pd['金额'] = rfm_pd['m_score'].replace({5:'优',4:'良',3:'一般',2:'差',1:'非常差'}) bins = rfm_pd.rfm_wscore.quantile(q=[0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1],interpolation='nearest') bins[0] = 0 #起点为0 labels = [1, 2, 3, 4, 5, 6, 7, 8] rfm_pd['level'] = pd.cut(rfm_pd.rfm_wscore, bins, labels=labels) rfm_pd = rfm_pd.reset_index() data_pd = data_pd.reset_index() fe = rfm_pd.sort_values('rfm_comb', ascending=0) fina = fe.merge(data_pd,on='product_name') # 打印结果 print(fina.head()) fina.to_excel('./rfm_edu_Q2non.xlsx',index=False)