是不是所有的1+1都等于2 ?
对于“1+1等于?”的问题,相信你一定会毫不犹豫地告诉我,等于2!可是今天,我要告诉你,在数学的世界里,1+1有时候并不等于2,它还可能等于10(读作:一零),这是为什么呢?因为存在不同的进位制。
我们把计数和记数时“满几进一”的制度,统称为数的进位制。
背景介绍常见的几种进位制
十进制:Decimal
通过小学的数学学习,我们知道满10进1,这就是我们全世界数学通用的十进制。0-9这十个数字就是数学上统一的十进制计数符号。
世界上最早出现的进位制就是十进制。按古希腊哲学家亚里士多德(Aristotle)的看法,选择十进制与人有十个手指头有关。古埃及的纸草文书表明,5000年前的古埃及人就发明了分别表示1,10,100等的符号,这正是十进制。不仅古埃及人,古罗马人也是这么记数的。中国古代数学也采用了十进制,除了符号上的差异外,和今天的记法完全一致。
六十进制:Sexagesimal
六十进制是以60为基数的进位制,六十进制的使用起源于古巴比伦。六十进制满60进1,需要用60个数码来表示。古巴比伦人之所以要选择60,是因为60 的因子非常多,正好是2,3,4,5,6的最小公倍数,所以可以将数字表示的非常精确和顺手,无限小数出现的可能性就会减小。天文学家特别喜欢六十进制,因为六十进制的计算更精确,确定角度、方位更精准。 中国农历纪年中,天干地支的最小公倍数即一周期为60年,其实也可以认为是六十进制。现在,六十进制用作记录时间、角度和地理坐标等。1
古巴比伦六十进制里的59个数字符号。
二进制:Binary
二进制是现代计算技术中广泛采用的一种进位制。二进制数用0、1两个数码来表示。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由17世纪德国数理哲学大师莱布尼茨发明。尽管用二进制书写较大的数很麻烦,但对电子计算机来说,二进制非常方便,因为电路的“开”和“关”或电脉冲的“有”和“无”就可以方便地表示一个二进制数,因此,计算机的机器语言就是“0-1”世界。你知道吗?莱布尼茨认为中国古代的太极八卦是世界上最早的二进制记数法,他对太极八卦图极为赞赏,称它是“流传在宇宙 间科学中之最古老 的纪念物”。
戈特弗里德·威廉·莱布尼茨(Gottfried Wilhelm Leibniz,1646年7月1日-1716年11月14日),德国哲学家、数学家,历史上少见的通才,被誉为十七世纪的亚里士多德。莱布尼茨在数学史和哲学史上都占有重要地位,对二进制的发展做出了极大的贡献。
原理剖析十进制和二进制的互化
下面,我们来学习一下十进制和二进制的互化:
十进制——二进制 我们可以借助短除法 将一个十进制数化成二进制数 150的二进制数就是:10010110 记作:150=10010110(2)这种方法叫做“二除取余法”。“二除”就是每次都用基数2作除数,除到商是“0”为止;“取余”就是取出每次所得的余数,依次作为二进制数从右到左各个数位上的数。
二进制——十进制所以,10010110(2)=150
二进制数化成十进制数,就是从二进制数最右边的数位开始,将各个数位上的数,依次乘以2的0次幂,2的1次幂,2的2次幂……再把所得的积相加,得到转化后的十进制数。
二进制的四则运算
二进制数的四则运算与十进制数的四则运算,在运算法则和运算顺序上基本相同。区别在于二进制数是“满2进1”,“借1当2”。下面,我们来看看二进制数的运算法则:
加法法则
0+0=0,
0+1=1+0=1,
1+1=10。
减法法则
0-0=0,
1-0=1,
1-1=0,
0-1=1有借位,借1当2(10)。
注意:在减法中,当需要向高一位借数时,必须把高一位的1看成下一位的2(10)。
乘法法则
0×0=0,
0×1=1×0=0,
1×1=1。
下面是相关例题 例1 求 1011(2)+11(2) 的和 所以, 1011(2)+11(2)=1110(2)例2 求1010(2)和101(2)的差 所以, 1010(2)-101(2)=101(2)
例3 计算1010(2)和101(2)的积 所以, 1010(2)×101 (2) =110010(2)
以下这个来自互联网的微视频为我们介绍了二进制代码究竟是如何工作的。
延伸探究其他常见的进位制及其与十进制的互化
其实,数学世界里还有很多种进位制,比较常用的还有八进制(Octonary)、十六进制(Hexadecimal)。
1.你能根据二进制的记数方法,写出1-12这些十进制数在八进制中的记法吗?
你能类比二进制与十进制的互化方法,尝试归纳一下八进制与十进制的互化方法吗?
2.请探索有关十六进制的表示以及和十进制的互化方法。
想一想
填写以下表格后,对比二进制、八进制、十六进制和十进制的互化方法,你能找到什么规律吗?
通过前面的阅读,我们认识了二进制、八进制和十六进制数,并且探究了它们和十进制数的互化。其实,二进制、八进制、十六进制之间也可以直接进行互化的。有兴趣的同学可以自己继续去探索。另外,我们还经常会用到十二进制,比方说一打等于十二个等等。你甚至还能创造出属于自己的进位制,要不要试一试?进位制的世界很神奇,它让我们的数学世界丰富多彩,也为人类文明的发展做出了巨大的贡献。五花八门的进位制等着你们自己去探索它们的奇妙之处。
本期作者单位:莘松中学
参考文献
[1]田庭彦.课堂上听不到的数学传奇[M].浙江:浙江教育出版社,2010:9-16
[2]李友耕.进位制与数学游戏[M].北京:科学出版社 ,2015:1-22
(文中图片、视频均来自网络)—END—