基于matlab的电机故障诊断,基于BP神经网络的电机故障诊断的研究(MATLAB,程序)

基于BP神经网络的电机故障诊断的研究(MATLAB,程序)(课题申报表,任务书,开题报告,中期检查表,外文翻译,论文25600字,程序,答辩PPT)

摘 要

随着我国经济发展的不断提高,电气化的应用越来越广,异步电动机因其经济、安全、高效、低耗被广泛的应用于工业生产的各个领域。电动机一旦发生故障不仅仅会损坏电机本身的正常运转,还会影响整个工业生产环节,从而造成巨大的经济损失,电机故障甚至会威胁到人身安全。因此,电机的正常工作显得格外重要,如何对电机加强保护,提高维修水平是一个十分重要的问题,这就对电机故障诊断提出了要求。

本文首先对异步电动机的结构、基本工作原理、常见的电机故障进行了相关介绍,并介绍了电动机转子断条、故障偏心的特征机理。其次介绍了频谱分析法的基础理论,根据不同类型的电机运行信号得到电流与振动频谱图形,以此来诊断电机的故障。

本文还对人工神经网络的基本原理进行了研究。利用MATLAB软件,建立基于BP网络的故障诊断结构,根据故障样本数据对网络进行训练,从而实现了对电机的诊断。最后对全文的工作进行了总结,本文从理论上对电机的故障诊断与分类做了分析,之后对处理后的故障特征数据进行了分类,具有一定的理论与实际意义。

关键词:异步电动机故障诊断;MATLAB;频谱分析;BP神经网络

ABSTRACT

Electrification is used more and more widely, asynchronous motor has been widely used in industrial production in various fields because of its economy, safety, high efficiency, low cons

  • 3
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
现有训练集数据,1000 × 7,如下: xxxxxxxxxxxxxxxxxxxx 有测试集数据,100 × 7,如下: xxxxxxxxxxxxxxxxxxxx 以上数据分别是从某系统采集的数据,  训练数据集中,分别是采集的数据和标注结果,其中1、2分别表示该系统有无故障;  测试数据集中,分别是采集的数据和真实结果,其中1、2分别表示该系统有无故障; 现在需要使用训练数据集训练BP神经网络,然后用训练好的神经网络对测试数据集进行测试,并与真实结果进行对比,最终分析出神经网络的性能。 % --- Executes on button press in pushbutton6. function pushbutton6_Callback(hObject, eventdata, handles) % hObject handle to pushbutton6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global output_test inputn_train outputn_train inputn_test ... outputps BPoutput_test xunlian_num Error input_train output_train %创建网络 %获得gui_set中值 num_yinhan=str2num(get(findobj('tag','edit_yinhan'),'string')); TF=get(findobj('tag','transfer'),'string'); %传递函数 valueTF=get(findobj('tag','transfer'),'value'); TF=TF{valueTF}; BTF=get(findobj('tag','train'),'string'); %训练函数 valueBTF=get(findobj('tag','train'),'value'); BTF=BTF{valueBTF}; BLF=get(findobj('tag','learn'),'string'); %学习函数 valueBLF=get(findobj('tag','learn'),'value'); BLF=BLF{valueBLF}; tic;%启动一个定时器 net=newff(inputn_train,outputn_train,num_yinhan,{TF},BTF,BLF); net.trainParam.epochs=str2num(get(findobj('tag','cishu'),'string')); net.trainParam.goal=str2num(get(findobj('tag','goal'),'string')); net.trainParam.lr=str2num(get(findobj('tag','rate'),'string')); net=train(net,inputn_train,outputn_train); an=sim(net,inputn_test); t=toc;%关闭定时器,获取程序运行时间 %网络输出反归一化
基于BP神经网络的齿轮箱故障诊断是一种通过训练神经网络,将输入的故障特征数据与预先定义的齿轮箱故障模式进行匹配,从而实现故障诊断的方法。下面介绍基于Matlab程序的实现步骤。 1. 数据采集和预处理:首先,需要采集齿轮箱的故障数据,包括振动、温度、压力等特征。然后,进行数据预处理,如去除噪声、归一化处理等。 2. 数据集划分:将采集到的数据集划分为训练集和测试集。通常,训练集占总数据集的70-80%,测试集占20-30%。 3. 神经网络建模:使用Matlab神经网络工具箱,选择BP神经网络进行建模。根据实际情况,选择合适的网络结构,包括输入层、隐藏层和输出层的节点数。 4. 网络训练:将训练集输入到神经网络中,进行反向传播算法的训练。可根据训练误差进行训练轮数的选择,直到误差满足要求为止。 5. 网络验证和测试:使用测试集对已经训练好的神经网络进行验证和测试。输出结果与实际故障情况进行对比,评估网络的准确性和可靠性。 6. 调优与改进:根据实际情况和测试结果,对网络结构和参数进行调优和改进,以提高诊断准确性和鲁棒性。 7. 应用与部署:将训练好的神经网络应用到实际齿轮箱的故障诊断中,实时监测和分析传感器数据,进行故障预警和诊断。 总结:基于BP神经网络的齿轮箱故障诊断Matlab程序可以通过数据采集与预处理、数据集划分、神经网络建模、网络训练、网络验证和测试、调优与改进以及应用与部署等步骤实现。该方法可以提高故障诊断的准确性和实时性,对齿轮箱的安全运行具有重要意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值