这篇是承接
非平凡的理想:线性空间直和分解随笔zhuanlan.zhihu.com
都属于线性代数范畴的内容,在考研,无论是数学一二三或者高等代数中会经常用到甚至出现类似的题目。自己觉得有必要归纳起来,也可也帮助有需要的人。
符号说明:
:矩阵
的 秩
:
阶单位矩阵
:域
上线性空间
的维数
:域
上线性空间
到
的全体线性映射
:线性变换
的核
:线性变换
的象
:线性变换
在
上的限制
1.对于矩阵
,如果
,试证明:
。
证明:令
为方程
的解空间,那么
,因为
,因此
中的任意列向量
都满足
,因此
。故有
。
2.(Sylvester不等式)对于矩阵
。试证明:
证明一(分块矩阵技巧):
注意到
,
而
,因此原命题成立。
证明二(方程组的观点):
记
,其中
是
的列向量。那么
设
是
的一个极大线性无关组,在剩下的
个向量中的任意一个向量
,我们都有
,因此
是方程
的解,这些
个解向量
构成的矩阵,我们有
而
因此
故命题成立。
证明三(线性空间的观点):
设
是域
上的线性空间,且
。取
。那么根据线性变换的秩的定义我们有如下等式
而注意到
因此我们有
最后容易知道
而右边就是不等式右端,因为
因此命题成立。
证明四(初等变换的观点):此方法由 @dragonlongwang 提供
不妨假设
,则考虑
的相抵标准型
,那么我们有
,考虑
,其中
为
型矩阵,
为
型矩阵。则
,从而有
因此
证毕。
3.(Frobenius秩不等式)对于矩阵
,试证明:
证明一:
注意到
对右端的分块矩阵做初等变换有
故命题成立。
证明二:
设
都是域
上的线性空间,且
,
。我们取
,
,
。
根据线性映射中的一系列定义我们知道
,
,
,因此我们有
。因此
而
因此,命题成立。
4.已知矩阵
,试证明:
证明:
设
的列向量为
,
的列向量为
,
为
的极大线性无关组,
为
的极大线性无关组。则
中的任意列向量可以由
这组向量线性表出。故不等式成立。
5.已知矩阵
,试证明:
证明:
注意到
又因为
因此不等式成立。
6.已知矩阵
,且满足
,
,试证明:
证明一:
由4的结论我们知道,只需要证明
即可。
注意到
因为
,因此方程
有解,不妨取一个解
。
故命题成立。
证明二:
利用维数定理我们有
因此,问题等价于说明 (
表示全空间)
我们先说明第一个等式,显然总是有
。我们任取
,那么有
,这是因为
。因此
那么因为
,因此
,
。故
等式一成立。
任意取
,那么
,因此
,那么
,因此
另一方面
是显然成立的,因此等式二成立,故命题成立。
7.(6的推广)已知矩阵
,且满足
,试证明:存在正整数
,使得
证明:
同样,我们只需证明
。我们将使用如下的结论:
级矩阵
,对于任意正整数
,我们都有
。注意到
因此,在这个不等式链中至少有一个等号成立,不然会有
个正整数小于
,这显然是不成立的。因此存在正整数
,有
,且
,因此对于任意正整数
,上述命题成立。
仿造6中证明一的做法,我们容易得到同样的结果。因此命题成立。
8.试证明:矩阵
是幂等矩阵
证明一:
:如果
或者
可逆,那么
显然是幂等矩阵。现假设两者都不可逆,那么由条件可知
这意味着
可以对角化,即存在可逆矩阵
,有
,两边平方后可以得到
,即
,因此
是幂等矩阵。
:根据
的幂等性,我们可知到
,利用
Sylvester不等式我们有
注意到
因此命题成立。
证明二:
记
分别是方程
和
的解空间,注意到
(互素),因此
。
:因为
因此
即
因此
。
:因为
是幂等矩阵,因此
,由于有直和分解,所以
此外,注意到
,
,带入即可知
9.试证明:矩阵
是对合矩阵(
)
证明一:
:如果
或者
可逆,那么
显然是对合矩阵。现假设两者都不可逆,那么由条件可知
这意味着
可以对角化,即存在可逆矩阵
,有
,两边平方后可以得到
,即
,因此
是对合矩阵。
:根据
的对合性,我们可知到
,利用
Sylvester不等式我们有
注意到
因此命题成立。
证明二:仿造8.中的证明二即可,有兴趣的读者可以自己证明(
)。
10.已知
,
,试证明:
证明:
由Sylvester不等式可知
另一方面,我们有
因此命题成立。
11.已知矩阵
,
满足
,试证明:
证明:
首先有
注意到
因此
因此命题成立。
这里我们给出第二个等式中左边等式的构造想法,
首先我们想要从
导出
,当然这是理想情况,在解答过程中我们对原始矩阵变换之后得到了
,这里,我们已经得到了
这个关键的因素,因此我们想去构造
,但是这里其实我们没法再通过变换
在保证
不变的情况下得到
,因此我们想到了利用矩阵的乘积。
这里想法就是配凑,首先注意到为了保证
的存在,因此我们矩阵
一开始应该是这个样子的
,然后我们计算
,计算后得到
,这里我们观察到,
与
,于是我们可以这么想,让
,则会使得大部分为
,(其实这里做了很多次尝试再知道这个方向是对的,大概花了10分钟),这个时候矩阵为
,但是这里我们还不能让
(想想为什么),这里我们应该是
,接着我们让矩阵右上角为
,因此
然后注意到
,因此我们就可以得到
这个矩阵了。
证明二:
我们考虑线性变换
然后,我们注意到
,因此会有
,使得
,这意味着
以及
,因此我们有
,由
的任意性,我们得到
,那么我们有不等式
证毕。(这里我们可以看成线性变换可以大大减少我们的步骤!这是线性变换的威力!ᕙ(⇀‸↼‵‵)ᕗ)
12.设
是域
上
维线性空间
上的线性变换,且
,
为线性变换
在
中某组基下的矩阵,试证明:
证明一:
这里我们有一种比较巧妙的方法,首先注意到存在
,
使得
我们考虑如下
阶方阵
这里我们还需要注意到
,因此我们希望把右下角的矩阵块消去,就可以利用上面的两个条件,我们得到
于是这个矩阵的秩为
只需要
即可,这刚好是题目中的条件,因此证毕。
(注意:本题中比较有趣的地方在于,在化简分块矩阵的时候,并没有找到具体的矩阵去做乘法而化简,而是利用了贝祖定理,这种技巧希望大家可以好好回味下)
13.一个重要的命题:已知多项式
为矩阵
的零化多项式,即
,且
,且
,其中
,则有如下秩等式
证明:
利用线性变换的观点,这个命题等价于对于线性空间
上的线性变换
,且
为
的零化多项式,则
利用零度与秩的关系有
因此,等式等价于证明
注意到利用直和分解中的分解2,这是显然成立的。因此命题成立。
这个命题可以解决一类相似的问题,比如8,9,12题。并且相当方便。
14.设
,
是
阶矩阵,试证明:
证明:
本题最初的解答利用了相抵标准型,作者在这里给出另一种简单的方法。注意到只需证明
同时,利用
命题2给出的Sylvester不等式可知
因此我们只需证明
这是自然成立的,因为总是有
因此命题成立。
进一步的,我们可以假设
,
,那么就有得到
15(中山大学2013第三题).设
,其中
,其中
(
)。试证明:
证明(这题目我怼了20分钟才想到的这个做法,太恶心了TAT):
注意到不等式右边实际上有如下的改写
,另一方面,根据
的定义,我们有
由于
均为幂等矩阵,所以上面右边又可以写成
好了,最技术性的地方来了,我们稍微仔细一点
为了去凑出
,我们做如下的处理
这个东西很明显会小于上面的等式,因此整个不等式成立。(后面有人提醒我这题可以用归纳,我看了下的确。。。。。不过这种技术性的处理还是很有意思的,起码做出来的时候开心了一会儿)
。。。。。未完,如果对于某些命题的证明的方法你有疑问或者有更好的方法,欢迎留言或者私聊我。