可逆矩阵的秩等于矩阵的阶数_常见的矩阵秩(不)等式及其各种证明

本文归纳了线性代数中关于矩阵秩的一些重要不等式,包括Sylvester不等式、Frobenius秩不等式等,并提供了多种证明方法。内容涵盖矩阵的秩与其可逆性、方程组、线性空间和初等变换的关系,适合考研和高代学习者参考。
摘要由CSDN通过智能技术生成

34681257033eaa9bc836501fcc7fd5dc.png

这篇是承接

非平凡的理想:线性空间直和分解随笔​zhuanlan.zhihu.com
ee643bd806152a29634e0e3957c3dbc2.png

都属于线性代数范畴的内容,在考研,无论是数学一二三或者高等代数中会经常用到甚至出现类似的题目。自己觉得有必要归纳起来,也可也帮助有需要的人。

符号说明:

:矩阵
的 秩

阶单位矩阵

:域
上线性空间
的维数

:域
上线性空间
的全体线性映射

:线性变换
的核

:线性变换
的象

:线性变换
上的限制

1.对于矩阵

,如果
,试证明:

证明:令

为方程
的解空间,那么
,因为
,因此
中的任意列向量
都满足
,因此
。故有

2.(Sylvester不等式)对于矩阵

。试证明:

证明一(分块矩阵技巧)

注意到

,因此原命题成立。

证明二(方程组的观点):

,其中
的列向量。那么

的一个极大线性无关组,在剩下的
个向量中的任意一个向量
,我们都有
,因此

是方程

的解,这些
个解向量
构成的矩阵,我们有

因此

故命题成立。

证明三(线性空间的观点):

是域
上的线性空间,且
。取
。那么根据线性变换的秩的定义我们有如下等式

而注意到

因此我们有

最后容易知道

而右边就是不等式右端,因为

因此命题成立。

证明四(初等变换的观点):此方法由 @dragonlongwang 提供

不妨假设

,则考虑
的相抵标准型
,那么我们有
,考虑
,其中
型矩阵,
型矩阵。则
,从而有
因此

证毕。

3.(Frobenius秩不等式)对于矩阵

,试证明:

证明一:

注意到

对右端的分块矩阵做初等变换有

故命题成立。

证明二:

都是域
上的线性空间,且
。我们取

根据线性映射中的一系列定义我们知道

,因此我们有
。因此
因此,命题成立。

4.已知矩阵

,试证明:

证明:

的列向量为
的列向量为
的极大线性无关组,
的极大线性无关组。则
中的任意列向量可以由
这组向量线性表出。故不等式成立。

5.已知矩阵

,试证明:

证明:

注意到

又因为

因此不等式成立。

6.已知矩阵

,且满足
,试证明:
证明一:

4的结论我们知道,只需要证明

即可。

注意到

因为
,因此方程
有解,不妨取一个解

故命题成立。

证明二:

利用维数定理我们有

因此,问题等价于说明 (
表示全空间)
我们先说明第一个等式,显然总是有
。我们任取
,那么有
,这是因为
。因此
那么因为
,因此
。故
等式一成立。

任意取

,那么
,因此
,那么
,因此
另一方面
是显然成立的,因此等式二成立,故命题成立。

7.(6的推广)已知矩阵

,且满足
,试证明:存在正整数
,使得
证明:

同样,我们只需证明

。我们将使用如下的结论:
级矩阵
,对于任意正整数
,我们都有
。注意到
因此,在这个不等式链中至少有一个等号成立,不然会有
个正整数小于
,这显然是不成立的。因此存在正整数
,有
,且
,因此对于任意正整数
,上述命题成立。

仿造6中证明一的做法,我们容易得到同样的结果。因此命题成立。

8.试证明:矩阵

是幂等矩阵

证明一:

:如果
或者
可逆,那么
显然是幂等矩阵。现假设两者都不可逆,那么由条件可知
这意味着
可以对角化,即存在可逆矩阵
,有
,两边平方后可以得到
,即
,因此
是幂等矩阵。

:根据
的幂等性,我们可知到
,利用
Sylvester不等式我们有
注意到
因此命题成立。

证明二:

分别是方程
的解空间,注意到
(互素),因此

:因为
因此
因此

:因为
是幂等矩阵,因此
,由于有直和分解,所以
此外,注意到
,带入即可知

9.试证明:矩阵

是对合矩阵(

证明一:

:如果
或者
可逆,那么
显然是对合矩阵。现假设两者都不可逆,那么由条件可知
这意味着
可以对角化,即存在可逆矩阵
,有
,两边平方后可以得到
,即
,因此
是对合矩阵。

:根据
的对合性,我们可知到
,利用
Sylvester不等式我们有
注意到
因此命题成立。

证明二:仿造8.中的证明二即可,有兴趣的读者可以自己证明(

)。

10.已知

,试证明:
证明:

Sylvester不等式可知

另一方面,我们有

因此命题成立。

11.已知矩阵

,
满足
,试证明:
证明:

首先有

注意到

因此

因此命题成立。

这里我们给出第二个等式中左边等式的构造想法

首先我们想要从

导出
,当然这是理想情况,在解答过程中我们对原始矩阵变换之后得到了
,这里,我们已经得到了
这个关键的因素,因此我们想去构造
,但是这里其实我们没法再通过变换
在保证
不变的情况下得到
,因此我们想到了利用矩阵的乘积。

这里想法就是配凑,首先注意到为了保证

的存在,因此我们矩阵
一开始应该是这个样子的
,然后我们计算
,计算后得到
,这里我们观察到,
,于是我们可以这么想,让
,则会使得大部分为
,(其实这里做了很多次尝试再知道这个方向是对的,大概花了10分钟),这个时候矩阵为
,但是这里我们还不能让
(想想为什么),这里我们应该是
,接着我们让矩阵右上角为
,因此

然后注意到

,因此我们就可以得到
这个矩阵了。

证明二:

我们考虑线性变换

然后,我们注意到
,因此会有
,使得
,这意味着
以及
,因此我们有
,由
的任意性,我们得到
,那么我们有不等式
证毕。(这里我们可以看成线性变换可以大大减少我们的步骤!这是线性变换的威力!ᕙ(⇀‸↼‵‵)ᕗ)

12.

是域
维线性空间
上的线性变换,且
为线性变换
中某组基下的矩阵,试证明:
证明一:

这里我们有一种比较巧妙的方法,首先注意到存在

使得
我们考虑如下
阶方阵
这里我们还需要注意到
,因此我们希望把右下角的矩阵块消去,就可以利用上面的两个条件,我们得到
于是这个矩阵的秩为
只需要
即可,这刚好是题目中的条件,因此证毕。

(注意:本题中比较有趣的地方在于,在化简分块矩阵的时候,并没有找到具体的矩阵去做乘法而化简,而是利用了贝祖定理,这种技巧希望大家可以好好回味下)

13.一个重要的命题:已知多项式

为矩阵
的零化多项式,即
,且
,且
,其中
,则有如下秩等式

证明:

利用线性变换的观点,这个命题等价于对于线性空间

上的线性变换
,且
的零化多项式,则
利用零度与秩的关系有
因此,等式等价于证明
注意到利用直和分解中的分解2,这是显然成立的。因此命题成立。

这个命题可以解决一类相似的问题,比如8,9,12题。并且相当方便。

14.

阶矩阵,试证明:

证明:

本题最初的解答利用了相抵标准型,作者在这里给出另一种简单的方法。注意到只需证明

同时,利用
命题2给出的Sylvester不等式可知
因此我们只需证明
这是自然成立的,因为总是有
因此命题成立。

进一步的,我们可以假设

,
,那么就有得到

15(中山大学2013第三题).

,其中
,其中
(
)。试证明:

证明(这题目我怼了20分钟才想到的这个做法,太恶心了TAT):

注意到不等式右边实际上有如下的改写

,另一方面,根据
的定义,我们有
由于
均为幂等矩阵,所以上面右边又可以写成
好了,最技术性的地方来了,我们稍微仔细一点
为了去凑出
,我们做如下的处理

这个东西很明显会小于上面的等式,因此整个不等式成立。(后面有人提醒我这题可以用归纳,我看了下的确。。。。。不过这种技术性的处理还是很有意思的,起码做出来的时候开心了一会儿)

。。。。。未完,如果对于某些命题的证明的方法你有疑问或者有更好的方法,欢迎留言或者私聊我。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值