可逆矩阵的秩等于矩阵的阶数_MIT线性代数11:矩阵空间,秩 1 矩阵

0 说明

笔记标题:MIT_LA_Lecture11

笔记版本:v1.0

对于文档的说明

  1. 你可以在我的Github仓库中下载本笔记的Markdwon源文档,并通过浏览目录进行更方便高效地浏览;也欢迎在知乎文章中进行浏览。
  2. 本笔记参考的课程为MIT Linear Algebra(麻省理工线性代数),本课程在网易公开课、 Bilibili 和 youtube 等网站上都有视频资源,读者可以选择合适的平台观看。
  3. 由于作者水平有限,笔记的内容、排版格式难免有不严谨的地方,希望读者能理解。

对于内容的说明

  1. 带箭头的小写字母表示的
    维向量空间中的向量,比如
    ;用小写的
    等表示一般线性空间中的向量;用不带箭头的小写字母表示标量,比如
    。除非在特殊说明的情况下,有序数组的向量都表示的是列向量。用
    来表示行向量。

11.1 矩阵空间

11.1.1 矩阵空间

矩阵空间也是一个定义在数域

上的线性空间:定义矩阵空间
型矩阵构成的集合,矩阵之间存在加法运算和数乘运算,且仍得到
型矩阵。并且矩阵之间的加法运算和数乘运算满足线性空间定义的 8 条规律,所以矩阵空间是一个线性空间,矩阵空间的零元即
型零矩阵。

11.1.2 子空间

以所有定义在数域

上的
矩阵构成的矩阵空间
为例,它有以下这些很有意思的子空间:

对称矩阵空间

所有

的上三角矩阵构成的矩阵空间
的一个子空间,因为首先
的一个子集,并且两个对称矩阵相加仍是对称矩阵,对称矩阵乘一个数也仍是对称矩阵,即对
的加法和乘法封闭,所以
的一个子空间。

上三角矩阵空间

所有

的对称矩阵构成的矩阵空间
的一个子空间,因为首先
的一个子集,并且两个上三角矩阵相加仍是上三角对称矩阵,上三角矩阵乘一个数也仍是上三角矩阵,即对
的加法和乘法封闭,所以
的一个子空间。

11.1.3 矩阵空间的基和维数

一般矩阵空间

仍以所有定义在数域

上的
矩阵构成的矩阵空间
为例,它有一个包含 9 个向量的自然基:

为什么它是一组基呢?我们在《线性代数-线性空间的知识梳理2》中已经回顾过,如果线性空间

内的一个向量组线性无关且
中所有向量都能由这个向量组线性表出,那么这个向量组是
的一个基

而任意

矩阵都可以如下表示,且表法唯一:

所以(1)是

的一个基,相应地

当然这里并不是说(1)是唯一的一个基,还有无数其他基,我们只需要找出一个基就能确定线性空间的维数和结构了。

对称矩阵空间

仍以所有定义在数域

上的
矩阵构成的矩阵空间
为例,其对称矩阵子空间
基和维数如何确定呢?

我们可以很容易得到以下 6 个向量构成

的一个基:

因为这 6 个矩阵线性无关,且任意

对称矩阵都可以如下表示,且表法唯一:

所以(3)是

的一个基,相应地

同样我们强调,

的基不是只有这一个,但我们有一个基就够了,因为有一个基,基的维数就是子空间的维数,且子空间中所有向量都能由基唯一线性表出,就能研究这个子空间的结构了。

上三角矩阵空间

仍以所有定义在数域

上的
矩阵构成的矩阵空间
为例,其上三角矩阵子空间
基和维数如何确定呢?我们可以很容易得到以下 6 个向量构成
的一个基:

所以

11.1.4 子空间的交,和与维数定理

接下来到关键的地方了,建议先阅读《线性代数-线性空间的知识梳理3》中子空间的维数定理等小节。

接下来我们研究矩阵空间

的子空间
的交,即
,这个比较简单,易知
即对角矩阵,其维数明显为 3。

但若要直接研究

的和,即
,这个就没有
那么直观了:

一种方法是通过定义,即

那么可以发现,对于任何一个

矩阵,它是可以表示成一个对称矩阵和一个上三角矩阵的和:

所以

,因此

另一种方法,为了确定

的维数,可以利用维数定理,即

这个公式中,

,所以
,而由
的定义可知,其本身就是
的一个子空间,且
,所以
,即
的和刚好覆盖了整个矩阵空间

这就是维数定理一个很好的应用,有时候直接分析两个子空间的和不容易,那么可以考虑通过维数定理先分别分析这两个子空间,再分析其交,这样就能得到

一旦我们知道一个子空间的维数
,那么只要找到这个子空间中
个线性无关的向量,那么这
个向量就是子空间的一个基

本小节除了介绍子空间的交,和和维数定理,另一方面是给出线性空间中元素一般性的例子,当然课堂中,老师还讲到了线性微分方程的解空间也是一个线性空间,这里不做具体介绍。

11.2 秩 1 矩阵

对秩为 1 的矩阵,也可以进行研究,比如秩为 1 的矩阵

我们从行向量的角度分解,可以等价表示为

我们有所有秩为 1 的矩阵可以表示为一列乘以一行的形式,即

之后的学习中,我们会认识到秩 1 矩阵行列式和特征值都会很简单。再讨论一下几个问题:

11.2.1 问题1

比如,一个

的矩阵的秩为
,我们可以将其表示成
个秩 1 矩阵的组合,所以秩 1 矩阵很有用,它就像搭建其他矩阵的积木一样。

举个简单例子

通过初等行变换

所以

的 1 和 3 列是列空间的一个基,其零空间:

由(11)第一列可知

,则

这就将

分解成了两个秩 1 矩阵的和。

11.2.2 问题2

型矩阵所有秩 1 矩阵所构成的子集显然不是一个子空间。

11.2.3 问题3

我们来看这样一个定义在数域

上的列向量的集合

它是

的子空间吗?

我们很容易验证它对加法和数乘运算都封闭,所以

的一个子空间。

那么,这个子空间结构是什么样子,换句话说,它的基和维数又是什么?

观察到

,这很像求解
时将化成的列向量组的形式,那么可以构造一个
。这样,求
的维数就变成了求
的零空间的维数。而
,所以
,即
。同理,我们可以求出
的一个基,即
的一个基为:


图论放在下节中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值