0 说明
笔记标题:MIT_LA_Lecture11
笔记版本:v1.0
对于文档的说明:
- 你可以在我的Github仓库中下载本笔记的Markdwon源文档,并通过浏览目录进行更方便高效地浏览;也欢迎在知乎文章中进行浏览。
- 本笔记参考的课程为MIT Linear Algebra(麻省理工线性代数),本课程在网易公开课、 Bilibili 和 youtube 等网站上都有视频资源,读者可以选择合适的平台观看。
- 由于作者水平有限,笔记的内容、排版格式难免有不严谨的地方,希望读者能理解。
对于内容的说明:
- 带箭头的小写字母表示的
即
维向量空间中的向量,比如
;用小写的
等表示一般线性空间中的向量;用不带箭头的小写字母表示标量,比如
。除非在特殊说明的情况下,有序数组的向量都表示的是列向量。用
来表示行向量。
11.1 矩阵空间
11.1.1 矩阵空间
矩阵空间也是一个定义在数域
11.1.2 子空间
以所有定义在数域
对称矩阵空间
所有
上三角矩阵空间
所有
11.1.3 矩阵空间的基和维数
一般矩阵空间
仍以所有定义在数域
为什么它是一组基呢?我们在《线性代数-线性空间的知识梳理2》中已经回顾过,如果线性空间
而任意
所以(1)是
当然这里并不是说(1)是唯一的一个基,还有无数其他基,我们只需要找出一个基就能确定线性空间的维数和结构了。
对称矩阵空间
仍以所有定义在数域
我们可以很容易得到以下 6 个向量构成
因为这 6 个矩阵线性无关,且任意
所以(3)是
同样我们强调,
上三角矩阵空间
仍以所有定义在数域
所以
11.1.4 子空间的交,和与维数定理
接下来到关键的地方了,建议先阅读《线性代数-线性空间的知识梳理3》中子空间的交、和和维数定理等小节。
接下来我们研究矩阵空间
但若要直接研究
一种方法是通过定义,即
那么可以发现,对于任何一个
所以
另一种方法,为了确定
这个公式中,
这就是维数定理一个很好的应用,有时候直接分析两个子空间的和不容易,那么可以考虑通过维数定理先分别分析这两个子空间,再分析其交,这样就能得到
本小节除了介绍子空间的交,和和维数定理,另一方面是给出线性空间中元素一般性的例子,当然课堂中,老师还讲到了线性微分方程的解空间也是一个线性空间,这里不做具体介绍。
11.2 秩 1 矩阵
对秩为 1 的矩阵,也可以进行研究,比如秩为 1 的矩阵
我们从行向量的角度分解,可以等价表示为
我们有所有秩为 1 的矩阵可以表示为一列乘以一行的形式,即
之后的学习中,我们会认识到秩 1 矩阵行列式和特征值都会很简单。再讨论一下几个问题:
11.2.1 问题1
比如,一个
举个简单例子
通过初等行变换
所以
由(11)第一列可知
即
这就将
11.2.2 问题2
但
11.2.3 问题3
我们来看这样一个定义在数域
它是
我们很容易验证它对加法和数乘运算都封闭,所以
那么,这个子空间结构是什么样子,换句话说,它的基和维数又是什么?
观察到
图论放在下节中。