条件:
函数

其中,
结论:
该函数的高阶导数为

证明过程如下:
两个可导函数的乘积的高阶通式为

下面我们用归纳法证明多个函数的高阶导数的通式!
首先,当k=2时

此时命题成立。
然后,我们假设当k=m时,该命题也成立。
即,下面的等式成立。

最后,我们只要证明当k=m+1成立,则该命题成立。

证明完毕!
下面我们可以验证一下!

对其求导
一阶导:

二阶导:

三阶导:

以此类推,
n阶导:

将

Reference:
1、宋道金,赵文玲.多个函数乘积的高阶导数通式.1995