0引言随着全球常规能源的日益紧张,利用可再生能源发电就有着重要的意义,可再生能源发电具有明显的环境效益和社会效益。由于风能蕴藏量大、分布广泛、可以再生等特点,风力发电是可再生能源发电的最常见的一种形式。风力发电机组由风力机、发电机等组成。在风力发电模拟系统中,风速能否较真实地反映实际风况,直接影响到对整个发电系统的性能检测,因而风速模拟成为风力发电模拟系统中首先需要解决的问题。图1为风力发电机组的基本模块框图,从中我们可以看出,风速模型是进行风力发电研究的源参数。国内外对风速分布,曾有过不少的研究和探索,可用一定的统计模型来进行拟合,例如:指数分布、正态分布、瑞利(Rayleigh)分布;双参数[1,2]Weibull分布;三参数[3]Weibull分布等等。有选择地选用上述模型拟合不同地域的风况,发现每种模型都有其自身的特点,但也跟实际风况存在着差距。Weibull分布是风速平均值的一种反应,当需要从风能资源的角度进行研究时,weibull分布较为理想,但其表示的是一个较长时间段内的风速平均值,不适宜于动态仿真研究。文献[4-6]采用的是平均风速分量与湍流分量相叠加的风速模型,风速的变化由湍流分量给出。文献[7]在对风速特性进行研究的基础上,建立了满足一定功率谱密度特性的自回归滑动平均(ARMA)风速模型。本文采用了组合风速数学模型。该模型较精确地描述了风速的随机性和间歇性的特点,将自然风速分为基本风速、阵风、渐变风和噪声风4部分组成,每一部分都能容易地计算出来,并且把风速的特点集中在较短时间内显示,而且能够全面地检验风力发电系统的性能,尤其是在风速突变时,整个系统的抗干扰性。本文利用Matlab/Simulink建立了组合风速数学模型,实现对风速的模拟,模拟结果较为理想。1风速模拟模型1.1双参数Weibull分布的风速模型双参数Weibull分布,其概率密度为:f(v)=kCvCk-1e-vCk(1)式中,k和C为Weibull分布的两个参数。k称为形状参数,是一个无因次量;C称为尺度参数,其量纲与速度相同。风速的分布函数为:P(vvc)=+0f(v)dv=1-exp-vcCk(2)其中形状参数k和尺度参数C通常的拟合方法是最小二乘法。Weibull分布的模拟需要大量的实际风场资料,而且估计参数的方法比较麻烦,不具有通用性,通常需要根据不同的地理位置采用不同的方法,这些都不利于实验室风速的模拟,因而本文采用组合风速数学模型。1.2组合风速数学模型[8,9]为了较精确地描述风能的随机性和间歇性的特点,风速变化的时空模型原则上通常用以下4种成分来模拟:基本风速Vwb、阵风Vwg、渐变风Vwr和噪声风Vwn。1.2.1基本风速它在风力机正常运行过程中一直存在,基本上反映了风场平均风速的变化。风力发电机向系统输送的额定功率的大小也主要由基本风来决定,可风电场测风所得的Weibull分布参数近似确定,即:Vwb=C1+1k(3)其中,C,k分别为Weibull分布的尺度参数和形状参数;一般认为基本风速不随时间变化,因而可以取常数,本文取8m/s。Vwb=Kb(Kb为一常数)(4)1.2.2阵风为描述风速突然变化的特性,可用阵风来模拟,在该时间段内风速具有余弦特性,在电力系统动态稳定分析中,特别是在分析风力发电系统对电网电压波动的影响时,通常用它来考核在较大风速变化情况下的动态特性(电压波动特性)。Vwg=0其它Gmax21-cos2t-T1gTgT1gT2r+TrRmaxt-T1rT2r-T1rT1rtT2rRmaxT2r