matlab 风速模型 小波滤波

该博客介绍了如何在A函数(包含常数和高次三角函数)上叠加阵风噪声,并通过小波滤波方法进行滤波处理。提供了A信号、噪声N、A+N组合信号及滤波后信号的图像,以及滤波效果的差值图像。任务要求包括生成相关图像和代码实现。
摘要由CSDN通过智能技术生成

1、内容简介


469-可以交流、咨询、答疑

2、内容说明

任务要求
设A为函数A=3+ 2sin32t+ 1/5sin*(1/10π)te
N序列是为噪声,模型为大气的阵风模型,在网上csdn能找到4
wwww
任务要求:其实就是在A模型.上叠加一-个噪音,然后把这个噪音用滤波的方法滤掉,但是这
个噪音的模型必须是阵风的模型,阵风的模型最好能调整到32赫兹。A函数是-个连续的
解析函数,基本构成就是一-个定值加一-个高阶的三角函数。
要求:有A的图像
有N的图像小
有A+N的图像
和滤波后的图像
以及差值图像
全套程序代码等相关文件。

3、仿真分析

clc
close all
clear
rng default
fs = 200;         %采样频率
t = 0:1/fs:50;    %时间信号
A = 3+2*sin(20*t)+sin(2*pi*t); %A模型数据
figure
plot(t,A)
xlabel 时间/s
ylabel 幅值
title A信号
% 0.5*sin(80*t) + 0.5*cos(60*t)+
N = 0.5*sin(40*t) + 0.5*cos(60*t)+0.1*rand(1,length(t)); %随机信号
figure
plot(t,N)
xlabel 时间/s
ylabel 幅值
title N信号

signal = A + N; %加入噪音的模型数据;
figure
plot(t,signal)
xlabel 时间/s
ylabel 幅值
title A+N信号
[xd,cxd,lxd] = wden(signal,'sqtwolog','s','one',2,'db3');
figure
plot(t,xd,t,A);                                                 %Mix_Signal_1 小波滤波后信号

 

 

 

 

4、参考论文


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>