欧氏空间内积定义_泛函分析笔记3:内积空间

我们前面讲了距离空间、赋范空间,距离空间赋予了两个点之间的距离度量,范数赋予了每个点自身的长度度量,而范数则可以导出距离。本章要讲的内积可以看成是更加统一的定义,因为从内积我们可以导出范数,进而导出距离。因此内积空间是一个“更小”的空间,在此基础上结合完备性我们引出了 Hilbert 空间,后续我们的研究也大多集中在 Hilbert 空间上。

1. 内积空间

定义

上的线性空间,
,若满足如下条件

则称

内积空间。可以用内积定义范数
。若得到的
为 Banach 空间,那么
Hilbert 空间

定理

  • (Schwartz 不等式)等号成立
    线性相关
  • 等号成立
    线性相关

定理

,设
,则
(此定理说明
内积为连续映射)。

证明:略。

命题:若

上的范数,若
都满足平行四边形等式
,则存在
上的内积
,使得

证明:较复杂,略。

例子 1

不是内积空间,反例比如
,验证平行四边形等式不成立即可。

例子 2

不是内积空间,反例如

实际上对于空间

只有在
的时候才是内积空间
,其余情况均不是内积空间。

对于空间

只有在
的时候才是内积空间

例子 3

不是内积空间,反例比如
,验证平行四边形等式不成立即可(说明找不到合适的内积定义来导出无穷范数)。

类比上面的例子,我们也可以对连续函数定义

范数(
范数)。首先定义内积

同样地,只有在

的时候
才是内积空间。

到这里大家基本了解了内积空间的特点,他比一般的赋范空间更严格,度量空间就更不用说了。根据初中的知识,有了内积我们就能计算夹角了,不过这里我们不讲夹角,而是考虑正交正交补的概念。

小结:这一部分讲了内积运算的定义,并且由内积可以导出范数的定义,但是内积比范数的要求更严格,因此对于某个范数,可以通过验证平行四边形等式来验证其是否可以由内积运算来导出。

2. 正交补与正交投影

内积空间

中,称
正交,若
,记为
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值