【矩阵论】05——线性空间——内积空间

本文探讨了内积空间的基本概念,包括内积的定义及其在向量长度、夹角和正交性中的应用。重点介绍了欧式空间和酉空间的区别,以及在内积空间中如何定义向量的长度和正交向量组。此外,还讨论了如何从一组基通过正交化和标准化过程得到标准正交基。
摘要由CSDN通过智能技术生成

本系列文章由Titus_1996 原创,转载请注明出处。  

文章链接:https://blog.csdn.net/Titus_1996/article/details/83087918

本系列文章使用的教材为《矩阵论》(第二版),杨明,刘先忠编,华中科技大学出版社。


为什么引入内积空间?

在线性代数中,我们学过内积的概念,通过内积我们可以解决向量长度,夹角,正交,等度量有关的问题。这是在几何空间中。现在推广到线性空间中,并建立度量关系。

 

内积空间

 

总结一下:

  • 内积(α,β)其实就是一个F上的数。

  • 内积空间是一种映射,从Vn(F)→F的映射。

  • 这个映射满足上面的三条性质。

注:

  • 在同一个线性空间上,可以定义不同的内积。也就是说内积是自己定义的,但一定要满足性质。

欧式空间和酉空间

 

[Vn(F);(α,β)]: 当数域F为R为欧式空间,当数域F为C为酉空间。

注:在复数空间中,矩阵A的共轭是对每一个元素取其共轭复数后得到的矩阵。A的共轭转置记为AH=(A')T

柯西不等式

也可写为:

三角不等式:

向量长度的性质

正交的概念

在内积空间中,若(α,β)=0,则α与β是正交的

,则{α1,α2,......αn}为标准正交向量组

注:不含零向量的正交向量组是线性无关的,这个向量组就是Vn(F)的基,标准正交基。

 

把正交化与标准化结合在一起,从一组基得到标准正交基,

用矩阵表示:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值