本系列文章由Titus_1996 原创,转载请注明出处。
文章链接:https://blog.csdn.net/Titus_1996/article/details/83087918
本系列文章使用的教材为《矩阵论》(第二版),杨明,刘先忠编,华中科技大学出版社。
为什么引入内积空间?
在线性代数中,我们学过内积的概念,通过内积我们可以解决向量长度,夹角,正交,等度量有关的问题。这是在几何空间中。现在推广到线性空间中,并建立度量关系。
内积空间
总结一下:
-
内积(α,β)其实就是一个F上的数。
-
内积空间是一种映射,从Vn(F)→F的映射。
-
这个映射满足上面的三条性质。
注:
-
在同一个线性空间上,可以定义不同的内积。也就是说内积是自己定义的,但一定要满足性质。
欧式空间和酉空间
[Vn(F);(α,β)]: 当数域F为R为欧式空间,当数域F为C为酉空间。
注:在复数空间中,矩阵A的共轭是对每一个元素取其共轭复数后得到的矩阵。A的共轭转置记为AH=(A')T
柯西不等式
也可写为:
三角不等式:
向量长度的性质
正交的概念
在内积空间中,若(α,β)=0,则α与β是正交的。
若,则{α1,α2,......αn}为标准正交向量组。
注:不含零向量的正交向量组是线性无关的,这个向量组就是Vn(F)的基,标准正交基。
把正交化与标准化结合在一起,从一组基得到标准正交基,
用矩阵表示: