java计算圆锥体积_秒懂球体体积公式是怎么来的

1b6da2074fa06046b2d3a924d5ac98c2.png

正文共:872 字

预计阅读时间: 3 分钟

数学部分难度:需要了解球体、柱体、锥体体积公式


还记得课本上是怎样推导球的体积公式的吗?

球体体积公式:

5f5bdf0ebeae0355b38c4aa53d7e1bf3.png

一个常见的方法是祖暅(gèng)原理,下面的动图解释的就是它:

下图左边是一个半径为r的球体,右边是一个和球体一样高(H=2r),底面半径和球体半径相同的圆柱,圆柱当中被挖去了两个圆锥(想像一个沙漏的形状)。

3cf18bd20dd18602e82026d84c256a24.gif

用一个平面去截这两个几何体,注意变化过程中,左右两边蓝色部分表示截面。

从俯视图方向看:

d3572019c488c0caf039e5214a7b44a1.gif

经过计算我们可以得出,变化过程中,两个截面面积相等。

几何体体积可以看做是无数个“薄片”堆积起来得到的。

由此我们能够猜测:左侧的球和右边的这个“大沙漏”,体积是完全相同的!

99c8f944e3b243f3b2d548db6b5b8d97.gif

图片来源:Hyrodium's Graphical MathLand

祖暅原理,在西方叫卡瓦列里原理(Principio di Cavalieri)。它说的是如果两个几何体在每一个相同高度处的截面积都相同,则它们的体积也相同。

从上面的图中可以看出,如果把底面半径为r、高为2r的圆柱体挖去两个高为r的圆锥,再把剩余部分与半径为r的球体进行逐层比较,可以发现二者在每个高度上的截面积都是相等的。

这样一来,用圆柱和圆锥的体积公式就可以推出球体积公式了:

5471b0210ac01625260bd6ef631dba1a.png

学过高数的同学可能会发现:这不就是说二重积分能够通过逐次积分来计算吗?的确,这可以看成是微积分的一个“前奏”。在17世纪上半叶,意大利数学家卡瓦列里提出了这条原理,并用它计算了一系列几何体的体积,而在17世纪下半叶,牛顿和莱布尼兹发明了微积分。

祖暅提出同样的原理是在公元5世纪,比卡瓦列里早了一千多年。

TIPS:祖暅是个名符其实的“官二代”。他出身书香门第兼官宦世家。曾祖祖昌是南朝刘宋时的大匠卿(相当于国家建工部长);祖父祖朔之学富五车,退休后还“返聘”为皇帝的“奉朝请”;父亲祖冲之任县令、校尉等职30多年,发明创造几十件。

a79074a7002afd2b11d77827217de012.png

祖暅的父亲祖冲之

中国南北朝时期杰出的数学家之一

首次将“圆周率”精算到小数第七位

祖暅是在求球的体积公式的过程中提出这条祖暅原理的。但他还不是第一个算出球体积公式的人。

早在公元前3世纪,古希腊的阿基米德就给出了球的体积公式。他用一种奇妙的力学方法,算出半径为r的球体积是半径为r、高为2r圆柱体积的三分之二,并用穷竭法给出了证明。阿基米德的方法已经有了微积分思想的雏形,不过没有用上祖暅原理。

阿基米德的成果并没有传到中国。早期的中国数学家也研究过球的体积,但没能得到正确的结果。到了南北朝时期,祖暅终于提出了这条重要的原理:“幂势既同,则积不容异”。

·END·


和新昊老师一起感受数学之美

23a07c063c79c311ecc567caa7d79315.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值