模糊pid控制的温度系统matlab源代码_matlab模糊控制工具箱使用和模糊控制pid实例参考(一)...

本文介绍了如何在MATLAB环境中使用模糊控制工具箱设计模糊PID控制器。首先通过fuzzy命令启动工具箱,确定控制结构,选择输入(误差e和误差变化ec)和输出(控制量u)变量。接着,进行输入输出变量的模糊化,定义论域范围和隶属函数。然后,设计模糊推理规则,形成模糊控制规则矩阵,并采用重心法进行解模糊。最后,将设计的模糊控制器保存为.fis文件,并在Simulink中调用该文件实现模糊控制。
摘要由CSDN通过智能技术生成

1、模糊控制工具箱使用

首先我们在Matlab的命令窗口中输入fuzzy,回车就会出来这样一个窗口。

32fead731bdfa7f09937a4e4089fc2b9.png

下面我们都是在这样一个窗口中进行模糊控制器的设计。

1)确定模糊控制器结构:即根据具体的系统确定输入、输出量。

这里我们可以选取标准的二维控制结构,即输入为误差e和误差变化ec,输出为控制量u。注意这里的变量还都是精确量。相应的模糊量为EECU,我们可以选择增加输入(Add Variable)来实现双入单出控制结构。

4c4406b3b6e3fa2ecefd73533bcae826.png

2)输入输出变量的模糊化:即把输入输出的精确量转化为对应语言变量的模糊集合。

在模糊控制工具箱中,我们在Member Function Edit中即可完成这些步骤。首先我们打开Member Function Edit窗口.

9c082769765000d73c0ea686402234f3.png

8530ed6b1977da98335f4dfeb1f558a2.png

然后分别对输入输出变量定义论域范围,添加隶属函数,以E为例,设置论域范围为[-3 3],添加隶属函数的个数为7.

 d987ea7ab81f4145af71c7af271253e8.png

然后根据设计要求分别对这些隶属函数进行修改,包括对应的语言变量,隶属函数类型。

f6487a04a5d0a24ebfd9747f47c06932.png

3)模糊推理决策算法设计:即根据模糊控制规则进行模糊推理,并决策出模糊输出量。

1d21811a9dd465c7fa9427c29df6b41e.png

制定完之后,会形成一个模糊控制规则矩阵,然后根据模糊输入量按照相应的模糊推理算法完成计算,并决策出模糊输出量。

4)对输出模糊量的解模糊:模糊控制器的输出量是一个模糊集合,通过反模糊化方法判决出一个确切的精确量,模糊化方法很多,我们这里选取重心法。

    372bd549a12c98ec690091690be51116.png

5)然后Export to disk,即可得到一个.fis文件,这就是你所设计的模糊控制器。

8f5b73b43038b628985e72fbfcd70677.png

6)simulink中使用fis文件,首先加入fuzzy模块,然后写入模糊文件,注意应用格式加单引号: 'fuzzpid.fis'

8982f2b57d7f768726955495a83029ad.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值