任意长整数加法问题分析与方案设计_QTMC酱的数学分析笔记 -1- 用Dedekind分割构造实数...

c0b3a74df9bda23e0f5616c66ee9c28c.png

题记:Young man, in mathematics you do not understand things. You just get used to them.

数学分析又称高等微积分,是数学科学学院的新生刚迈进大学的校门时的必修课。我是在高二时渐渐接触到这个学科,刚开始还未有对数学系课程的了解,故最初的理解是“运用数学的方法分析生活中的问题”,即有似于应用题。然而事实几乎完全不是这样。所谓“分析”是极限的艺术,是第三次数学危机中微积分、实数等理论严格化的产物——是人类常试用形式逻辑理解“无穷”的过程。至于为什么叫“数学分析”,而不是今后要学的“实分析”,“复分析”,“泛函分析”等名字,也许是因为它处于基础地位,过了这一关才能解锁后续的“剧情”,在更为复杂的情节中存活下来。这也足以显示数学分析的significance。

而学习数学分析对大部分人(也包括我自己)是清新与晦涩并存的经历。奔神言:

“不要试图用直觉理解数学,而是用数学修正自己的直觉。”

我们会对Riemann重排定理(一个条件收敛的级数经过Riemann重排后可以收敛到R中任何一处)感到震惊,但也同样因为晦涩难懂的语言而感到劝退。那这其实是正常事,但作为数学学习者来说,理解抽象的语言是重要且必须逾越的工作。恰似题记所言:“试图去习惯它!

本专栏是量子酱的学习记录,难度与进度调整在适合我自己的程度上。当然,量子酱也会尽力用通俗的语言解释一些原理,但晦涩与难懂仍然是unavoidable的。那么前言(废话)就说到这里,我们正式开始数学分析的学习。

1、有理数的建立

1.1 自然数集

“研究数学要有“数””。这个观点其实不尽正确,比如在抽象代数中,我们将碰到的是更多没有“数”的结构,如

equation?tex=D_%7B2n%7D%3D%3Cx%2Cy+%5C%2C%7C%5C%2C+x%5En%3Dy%5E2%3D1%2Cyxy%5E%7B-1%7Dx%3D1%3E (正二面体群),有肉眼可见的幂次,平方,逆等运算记号,但进行运算的对象并不是数,而是旋转,对称这样的几何变换。在中小学时代我们接触的实数,在接下来的论述中看来也根本不是通常意义的数字,而是由一些集合构成的产物。下面我们从自然数说起。

为了首先让自然数的概念严格化,Peano于1889年发表了自然数公理,通过五条公理刻画出完整的

equation?tex=%5Cmathbb%7BN%7D (在这里复习一下一些记号 :
equation?tex=%5Cmathbb%7BN%7D是自然数集、
equation?tex=%5Cmathbb%7BN%7D%5E%7B%2A%7D 是从1开始的自然数集、
equation?tex=%5Cmathbb%7BZ%7D是整数集、
equation?tex=%5Cmathbb%7BQ%7D 是有理数集、
equation?tex=%5Cmathbb%7BR%7D 是实数集、
equation?tex=%5Cmathbb%7BC%7D 是复数集合)
  • equation?tex=0 属于自然数集
    equation?tex=%5Cmathbb%7BN%7D
  • 每一个确定的自然数
    equation?tex=n 都有唯一的后继数
    equation?tex=n%5E%7B%2B%7D
  • 没有以
    equation?tex=0 为后继数的自然数
  • 不同的自然数对应不同的后继数,即若
    equation?tex=m+%5Cne+n ,则
    equation?tex=m%5E%7B%2B%7D+%5Cne+n%5E%7B%2B%7D
  • equation?tex=E
    equation?tex=%5Cmathbb%7BN%7D 的子集,包含
    equation?tex=0 及其每一个元素的后继数,则
    equation?tex=E%3D%5Cmathbb%7BN%7D

这里的后继数可以理解为我们日常生活中的+1(复读bushi)可以验证上述五条公理中一些公理推出剩下的公理。而计算鬼才von Neumann则按照如下方式无中生有地构造出自然数:(具体事例可以参考von Nuemann在聚会上的口算级数)

  • equation?tex=0%3A%3D%5Coslash
  • equation?tex=1%3A%3D%5C%7B%5Coslash+%5C%7D%3D%5C%7B0%5C%7D
  • equation?tex=2%3A%3D%5C%7B%5Coslash%2C%5C%7B%5Coslash%5C%7D%5C%7D%3D%5C%7B0%2C1%5C%7D
  • equation?tex=3%3A%3D%5C%7B%5Coslash%2C%5C%7B%5Coslash%5C%7D%2C%5C%7B%5Coslash%2C%5C%7B%5Coslash%5C%7D%5C%7D%2C%5C%7B%5Coslash%2C%5C%7B%5Coslash%5C%7D%2C%5C%7B%5Coslash%2C%5C%7B%5Coslash%5C%7D%5C%7D%5C%7D%5C%7D%3D%5C%7B0%2C1%2C2%5C%7D
  • ......
  • equation?tex=n%2B1%3A%3Dn%5Ccup%5C%7Bn%5C%7D%3D%5C%7B0%2C1%2C2%2C...%2Cn%5C%7D

如果说古人对于数的概念是虚无的,那von Neumann的自然数同样架空于虚无之上,不过这个“虚无”有着严密的构造方法,使之实际上并不虚无。自P然数事实上是很强大的东西,基于自然数公理,我们发现了解决一列有序命题的数学归纳法:

(第一类数学归纳法)设
equation?tex=P_0%2CP_1%2C...%2CP_n%2C...
是一列命题,满足 (1)
equation?tex=P_0
成立; (2)若对某个
equation?tex=n+%5Cin+%5Cmathbb%7BN%7D
,
equation?tex=P_n
成立,则
equation?tex=P_%7Bn%2B1%7D
成立;
equation?tex=%5Cforall+n%5Cin+%5Cmathbb%7BN%7D
equation?tex=P_n
成立。
equation?tex=Proof%3A
equation?tex=E%3A%3D%5C%7Bn+%5Cin+%5Cmathbb%7BN%7D%7CP_n+%5C%2C+%E6%88%90%E7%AB%8B%5C%7D
,由(1)得
equation?tex=0%5Cin+E
而由(2)得,
equation?tex=n+%5Cin+E+
蕴含
equation?tex=n%2B1+%5Cin+E
. 由自然数公理5得
equation?tex=E+%3D+%5Cmathbb%7BN%7D

光有自然数还不够用,接着我们定义加法与乘法运算:对于

equation?tex=m%2Cn+%5Cin%5Cmathbb%7BN%7D ,定义加法如下:
  • equation?tex=n%2B0%3Dn
  • equation?tex=m%2Bn%5E%7B%2B%7D%3D%28m%2Bn%29%5E%7B%2B%7D

也许这里的加法定义有些难以操作,不过倘若我们带入一些特殊的数进行推演,则会产生我们熟悉的结果,即

equation?tex=m%2B1%3Dm%2B0%5E%7B%2B%7D%3D%28m%2B0%29%5E%7B%2B%7D%3Dm%5E%7B%2B%7D ,这正是我们熟悉(嘛?)的后继数,而对于一般的
equation?tex=m%2Cn ,我们可以类似归纳地验证。如你所见,我们用两条公理建立了熟悉的加法。接着再来定义乘法如下:(许多教材中将此留给读者证明,但我觉得并不显然)
  • equation?tex=a%5Ctimes0%3D0
  • equation?tex=a%5Ctimes+b%5E%7B%2B%7D%3Da%5Ctimes+b+%2B+a

这个定义中,实则是有了分配律的影子,但在逻辑上这里没有用任何之前未曾申明的东西!这里的的乘法也是容易验证的(真的不难qwq),其验证将留作本讲的第一道习题。 ヽ(・ω・。)ノ

其次,加法作为一个运算,需要验证其一些性质,这些性质通常有交换律、结合律,涉及到两个运算时,还需要分配律。

  • (加法结合律A1)
    equation?tex=x%2B%28y%2Bz%29%3D%28x%2By%29%2Bz
  • (加法交换律A2)
    equation?tex=x%2By%3Dy%2Bx
  • (乘法结合律M1)
    equation?tex=x%28y+z%29%3D%28x+y%29z
  • (乘法交换律M2)
    equation?tex=xy%3Dyx
  • (乘法分配律AM)
    equation?tex=x%28y%2Bz%29%3Dxy%2Bxz

这里证明加法交换律,加法结合律与乘法分配律,而乘法交换律与结合律交给读者作为第二道习题。

(加法交换律A2)
equation?tex=x%2By%3Dy%2Bx
equation?tex=Proof%EF%BC%9A 首先证明
equation?tex=0%2Bx%3Dx%2B0 (注意!这件事不并不太显然!)

首先
equation?tex=0%5E%7B%2B%7D%2B0%3D0%5E%7B%2B%7D%3D%280%2B0%29%5E%7B%2B%7D%3D0%2B0%5E%7B%2B%7D

而若
equation?tex=0%2Bx%3Dx ,则
equation?tex=0%2Bx%5E%7B%2B%7D%3D%280%2Bx%29%5E%7B%2B%7D%3Dx%5E%7B%2B%7D ,由数归得证.

最后证明
equation?tex=%5Cforall+%5C%2C+x%2Cy+%5Cin+%5Cmathbb%7BN%7D+%2C+x%5E%7B%2B%7D%2By%3Dx%2By%5E%7B%2B%7D

equation?tex=y%3D1 ,则
equation?tex=x%5E%7B%2B%7D%2B1%3D%28x%2B1%29%5E%7B%2B%7D%3Dx%2B1%5E%7B%2B%7D

equation?tex=x%5E%7B%2B%7D%2By%3Dx%2By%5E%7B%2B%7D ,则
equation?tex=%5C%2C%5Cqquad+%5Cqquad+x%5E%7B%2B%7D%2By%5E%7B%2B%7D%3D%28x%5E%7B%2B%7D%2By%29%5E%7B%2B%7D%3D%28x%2By%5E%7B%2B%7D%29%3Dx%2B%28y%5E%7B%2B%7D%29%5E%7B%2B%7D

由数归,最后加法交换律得证.

这里需要读者注意的是,网上对于第一步大多给的是显然。然而如你所见,这一步显然个锤子(恼。所以在学习数学教材时,再显然的东西也请在草稿纸上“三思”,不要轻视任何一个数学结论。接着是加法结合律。

(加法结合律A1)
equation?tex=%28x%2By%29%2Bz%3Dx%2B%28y%2Bz%29
equation?tex=Proof%EF%BC%9A 仍然使用数学归纳法(事实上,这是我们目前仅有的一些武器)

equation?tex=z%3D0 时,由加法定义得
equation?tex=%28x%2By%29%2B0%3Dx%2By

并且
equation?tex=x%2B%28y%2B0%29%3Dx%2By ,固然结合律对
equation?tex=z%3D0 成立

若对
equation?tex=k+%5Cin+%5Cmathbb%7BN%7D成立
equation?tex=%28x%2By%29%2Bk%3Dx%2B%28y%2Bk%29 ,则对于
equation?tex=k%5E%7B%2B%7D
equation?tex=%5C%2C%5Cqquad+%5Cqquad%28x%2By%29%2Bk%5E%7B%2B%7D%3D%28%28x%2By%29%2Bk%29%5E%7B%2B%7D 以及
equation?tex=%5C%2C%5Cqquad+%5Cqquad+x%2B%28y%2Bk%5E%7B%2B%7D%29%3Dx%2B%28y%2Bk%29%5E%7B%2B%7D%3D%28x%2B%28y%2Bk%29%29%5E%7B%2B%7D

固然
equation?tex=%28x%2By%29%2Bk%5E%7B%2B%7D%3Dx%2B%28y%2Bk%5E%7B%2B%7D%29

故由数归得加法结合律成立.

最后证明乘法分配律。有了之前的铺垫,这件事就变得容易了许多。(假定已经完成了乘法交换律与结合律的证明)

(乘法分配律AM)
equation?tex=x%28y%2Bz%29%3Dxy%2Bxz
equation?tex=Proof%EF%BC%9A 即证
equation?tex=%28y%2Bz%29x%3Dyx%2Bzx

equation?tex=x%3D0 时,
equation?tex=%28y%2Bz%29x%3D0
equation?tex=yx%2Bzx%3D0%2B0%3D0

故乘法分配律在此时成立.
equation?tex=x%3Dk时成立,则当
equation?tex=x%3Dk%5E%7B%2B%7D 时,
equation?tex=%5C%2C%5Cqquad+%5Cqquad%28y%2Bz%29x%5E%7B%2B%7D%3D%28y%2Bz%29x%2By%2Bz%3Dyx%2Bxz%2By%2Bz
equation?tex=%5C%2C%5C%2C+%5Cqquad+%5Cqquad+%5Cqquad+%5Cqquad+%3D%28yx%2By%29%2B%28zx%2Bz%29%3Dyx%5E%7B%2B%7D%2Bzx%5E%7B%2B%7D

故由数归得证.

有了如上定义的自然数与其上的加法乘法后,起码这套概念已经可以用来数西伯利亚挖出来的土豆惹,并且可以自由地进行加法与乘法运算。下面我们将建立逆的概念,并由此构造出有理数 (/≧▽≦/)


1.2 整数集与序

有如上定义后,我们开始思考另一则运算性质:

  • (加法消去律)
    equation?tex=%5Cforall+%5C%2C+a%2Cb%2Cc+%5Cin+%5Cmathbb%7BN%7D
    ,若
    equation?tex=a%2Bb%3Da%2Bc
    ,则
    equation?tex=b%3Dc

限于篇幅及难度(较易),这里略去详细证明。大致思路是对

equation?tex=a 作归纳。乘法也有消去律,也不难证明。下面默认已经证得了这两条性质。但这里引出了两个新问题:加法消去律是否蕴含了另一种过程?是否还暗搓搓地引入了一个新的数系?相信大家已经知道,这个新的数系就是整数。明人不说暗话。接着,我们将以此为基础构建整数。
  • 定义具有形式
    equation?tex=a-b 的形式的数为整数,其中
    equation?tex=a%2Cb+%5Cin+%5Cmathbb%7BN%7D 。(注意此处“
    equation?tex=- ”还不是减法运算,只是一个还未赋予意义的运算符号而已)

有了这个东西,我们可以开始着手准备整数的加法与乘法。但由于整数

equation?tex=a-b 其实是自然数集到某个集合的映射,记整数全体为
equation?tex=%5Cmathbb%7BZ%7D ,那么这个映射可以写成
equation?tex=f%3A%5Cmathbb%7BN%7D%5E2+%5Crightarrow+%5Cmathbb%7BZ%7D
  • 这里我们定义两个集合的笛卡尔积(Descartes' product):
    equation?tex=%5Cquad+A%5Ctimes+B%3D%5C%7B%28a%2Cb%29%7C%5C%2C+a+%5Cin+A%2Cb+%5Cin+B%5C%7D
  • equation?tex=A%5En%3A%3D%5Cunderbrace%7BA%5Ctimes+A++%5Ctimes+%5Cdots+%5Ctimes+A+%7D_%5Ctext%7Bn%E4%B8%AAA%7D++

既然是二元函数,那我们有必要定义两个整数的相等与加乘法。

  • 两个整数
    equation?tex=a-b
    equation?tex=c-d
    相等当且仅当
    equation?tex=a%2Bd%3Db%2Bc
  • 两个整数的加法:
    equation?tex=%28a-b%29%2B%28c-d%29%3A%3D%28a%2Bc%29-%28b%2Bd%29
  • 两个整数的乘法:
    equation?tex=%28a-b%29%28c-d%29%3A%3D%28ac%2Bbd%29-%28ad%2Bbc%29

乘法运算的定义其实依赖于因式分解,其实是站在“上帝视角”写出的定义式。但此处定义实则没有用到任何未曾声明的符号,只是看起来不是那么自然。容易证明整数的加法与乘法仍然满足交换律与结合率,由于过程过于trivial,故在此不作证明。但我们既然讲到整数相等,就不得不重申相等(等价关系)需要满足的性质:

  • 对称性:
    equation?tex=x%3Dy+%5CLeftrightarrow+y%3Dx
  • 自反性:
    equation?tex=x%3Dx
  • 传递性:
    equation?tex=x%3Dy%5C%2C+%2C%5C%2C+y%3Dz%5CRightarrow+x%3Dz

自反性与对称性是容易验证的,在此我们验证整数具备传递性:

(整数传递性)若
equation?tex=x%2Cy%2Cz+%5Cin+%5Cmathbb%7BZ%7D
,则
equation?tex=x%3Dy%5C%2C+%2C%5C%2C+y%3Dz%5CRightarrow+x%3Dz
equation?tex=Proof%EF%BC%9A
equation?tex=x%3A%3Da-b ,
equation?tex=y%3Dc-d ,
equation?tex=z%3De-f ,(
equation?tex=a%2Cb%2Cc%2Cd%2Ce%2Cf+%5Cin+%5Cmathbb%7BN%7D

equation?tex=x%3Dy
equation?tex=a-b%3Dc-d ,即
equation?tex=a%2Bd%3Db%2Bc

同理
equation?tex=c%2Bf%3Dd%2Be

equation?tex=a%2Bd%2Bc%2Bf%3Dc%2Bb%2Bd%2Be
(这一步的证明留作习题)
故再由消去律即得
equation?tex=a%2Bf%3Db%2Be,即
equation?tex=a-b%3De-f

equation?tex=x%3Dz

至此,整数自身的性质已经完事了,下面再验证整数的加法与乘法是否成功定义:

  • equation?tex=a%2Cb%2Cc%2Cd%2Ca%27%2Cb%27+%5Cin+%5Cmathbb%7BN%7D
    ,且
    equation?tex=a-b%3Da%27-b%27
    ,则有:
  • (1)
    equation?tex=%28a-b%29%2B%28c-d%29%3D%28a%27-b%27%29%2B%28c-d%29
  • (2)
    equation?tex=%28a-b%29%28c-d%29%3D%28a%27-b%27%29%28c-d%29

这里加法的验证不作习题,若读者感兴趣则自行完成(没啥难度u1s1),乘法的情形留作习题(hint:善用乘法分配律) 另外,我们也能证得

equation?tex=n%3Dn-0
equation?tex=n+%5Cin+%5Cmathbb%7BN%7D )。接下来,我们将由此引入负数的定义:
  • 对于整数
    equation?tex=a-b
    ,定义其负数为
    equation?tex=b-a
    . 正数定义为非零的自然数. 特别地,如果
    equation?tex=n%3Dn-0
    是正的自然数,则定义其负数为
    equation?tex=-n%3D0-n
    .

现在,我们终于把进度推到了小学六年级的水准,知道了正数、0 与负数的存在。整数大致已经构造完毕。整数具有三歧性,即任取一个整数,它必定是正数、0与负数中的某一个。这不是公理,而是定理。为了证明它,并构造完整数,我们开始比较大小。首先是正整数比较大小。

  • (自然数的排序)令
    equation?tex=n%2Cm+%5Cin+%5Cmathbb%7BN%7D
    ,则我们说
    equation?tex=n+%5Cgeq+m
    是指存在自然数
    equation?tex=a
    使得
    equation?tex=n%3Dm%2Ba
    . 而
    equation?tex=n%3Em
    是指
    equation?tex=n+%5Cgeq+m+%5C%2C
    equation?tex=n%5Cne+m
    .

所谓的比较大小,即是数域中“序”的概念了。它就像一本汉语字典是按部首的笔画多少排列一样,将数排了个队。当然,“序”这东西自然不是白给,它对序提出了一定的要求。下面我们列出自然数序公理:(以下出现的符号全是自然数)

  • (自反性)
    equation?tex=a%5Cgeq+a
  • (传递性)若
    equation?tex=a%5Cgeq+b
    equation?tex=b%5Cgeq+c
    , 则
    equation?tex=a%5Cgeq+c
  • (反对称性)若
    equation?tex=a%5Cgeq+b
    equation?tex=b%5Cgeq+a
    , 则
    equation?tex=a%3Db
  • (加法保序性)
    equation?tex=a%5Cgeq+b
    当且仅当
    equation?tex=a%2Bc%5Cgeq+b%2Bc
  • (乘法保序性)
    equation?tex=a%5Cgeq+b
    当且仅当
    equation?tex=ac%5Cgeq+bc
    equation?tex=c+%5Cne+0
  • equation?tex=%5Cquad+a%3Cb
    当且仅当
    equation?tex=a%5E%7B%2B%7D%5Cleq+b

性质6其实是竞赛中常用的手法。它也是定理,值得一证,证法限于篇幅限制,在这里不给出,有兴趣的小可爱可以自行尝试。现在我们就有充足的工具去证明整数的三歧性了。

  • (整数的三歧性)若
    equation?tex=x
    是一个整数,则
    equation?tex=x
    必然是也只能是0,正数与负数中的一个.

限于篇幅限制,这条定理也不给出证明。其证明在《陶哲轩实分析》的第62页(pdf第74页)上有给出。具体操作不难。不过强调一点:先证必定满足三条中的至少一条,再论证只能满足一条。现在,我们整理一下整数上的代数运算律:

  • (加法结合律A1)
    equation?tex=%28x%2By%29%2Bz%3Dx%2B%28y%2Bz%29
  • (加法交换律A2)
    equation?tex=x%2By%3Dy%2Bx
  • (加法单位元A3)
    equation?tex=x%2B0%3D0%2Bx%3Dx
  • (加法负元A4)
    equation?tex=x%2B%28-x%29%3D0
  • (乘法结合律M1)
    equation?tex=%28xy%29z%3Dx%28yz%29
  • (乘法交换律M2)
    equation?tex=xy%3Dyx
  • (乘法分配律AM)
    equation?tex=x%28y%2Bz%29%3Dxy%2Bxz
  • (乘法单位元M3)
    equation?tex=x1%3D1x%3Dx

请注意,这上面的所有性质对于自然数成立,但对于整数仍然需要进一步验证,毕竟整数是更大的环结构,而自然数集只是一个半环(会在近期的抽象代数笔记中重申这些概念的,这里可以忽略)。这里限于视觉观感,我们不作证明,并只将乘法结合律与分配律留作习题。

最后我们以正式引入减法与整数上的序结束这个小节!

  • (整数的减法)将整数
    equation?tex=x
    equation?tex=y
    的减法定义为
    equation?tex=x-y%3A%3Dx%2B%28-y%29
    .

且由于

equation?tex=x%2B%28-y%29%3Dx-0%2B%280-y%29%3Dx-y (注意,这里的减号是刚才那个没有意义的运算符号!)。我们由此证明了起初定义的小横杠和我们想要的减法运算是一回事!下面列出整数的六条序公理(其实是定理):
  • equation?tex=%5Cquad+a%3Eb 当且仅当
    equation?tex=a-b%5Cin+N%5E%2A
  • (加法保序性)
    equation?tex=a%5Cgeq+b 当且仅当
    equation?tex=a%2Bc%5Cgeq+b%2Bc
  • (正乘法保序性)
    equation?tex=a%5Cgeq+b当且仅当
    equation?tex=ac%5Cgeq+bc
    equation?tex=c+%5Cne+0
  • (负运算反序性)
    equation?tex=a%3Eb当且仅当
    equation?tex=-a%3C-b
  • (传递性)若
    equation?tex=a%5Cgeq+b
    equation?tex=b%5Cgeq+c , 则
    equation?tex=a%5Cgeq+c
  • (三歧性)命题
    equation?tex=a%3Eb%2Ca%3Db%2Ca%3Cb 中成立且仅成立一个

到此为止,我们成功地刻画了我们熟悉的整数及其运算与序关系。下面我们将继续扩大这个数系,下一步是整数之比,也即有理数。


1.3 比例数(有理数)

抽象代数的观点认为,代数结构中有些重要的组成部分,如二元运算关系(也有多 元 运 动),运算封闭性,单位元等。在目前我们得到的结构

equation?tex=%5Cmathbb%7BZ%7D 中,已经确实做到了对加法与乘法的封闭性,即任意两个整数相加相乘,你不可能做出来个不是整数的东西。但问题来了,比如我现在有一个数2,有什么东西和它相乘可以变成1呢?

我们暂且抛开这个问题不谈。在一些比较合格的数学科普中,我们都知道毕达哥拉斯搞出不可公度的

equation?tex=%5Csqrt%7B2%7D ,大家对这则故事的印象都停留在
equation?tex=%5Csqrt%7B2%7D不是有理数,或是毕达哥拉斯被扔进了大海之上。但显然,许多读者和部分作者将有理数当成了理所当然的事情。希望在本次笔记后能有改变认识。(在这一节中,我们将避开“有理数”这个名词,并在最后的戴德金分割中给出区别有理数与无理数的严格定义)

在这里,我们又要搞一个毫无意义的运算,记为“//”,我们将用除法的特征定义它,并使它最后成为除法(终将成为你bushi)。它满足:

  • equation?tex=a%2Cb+%5Cin+%5Cmathbb%7BZ%7D ,且
    equation?tex=b+%5Cne+0,则
    equation?tex=a%2F%2Fb 有意义
  • equation?tex=a%2F%2Fb%3Dc%2F%2Fd 当且仅当
    equation?tex=ad%3Dbc

第二条性质刻画的其实是约分。我们把这样的

equation?tex=a%2F%2Fb 称作比例数,记其全体为
equation?tex=%5Cmathbb%7BQ%7D ,并着手定义他们的运算:
  • 加法:
    equation?tex=%28a%2F%2Fb%29%2B%28c%2F%2Fd%29%3A%3D%28ad%2Bbc%29%2F%2F%28bd%29
  • 乘法:
    equation?tex=%28a%2F%2Fb%29%28c%2F%2Fd%29%3A%3D%28ac%29%2F%2F%28bd%29
  • 负运算:
    equation?tex=-%28a%2F%2Fb%29%3A%3D%28-a%29%2F%2Fb

容易验证,以上三个运算都是良好定义的,过程可照着整数情形来练习。但我们的目的是要创造最好的比例数,而我们所习惯的比例数中,自然数是它的一部分,因此我们进行如下定义:

  • equation?tex=%28a%2F%2F1%29%3A%3Da

这个关系相当妙,妙就妙在填平整数与比例数的两套算数系统之间的沟壑,使之成为一体(不是抽象代数中的体结构)。有关“0”的验证由读者进行(想一下就行了)。我们进行适当的验证:

  • equation?tex=%28a%2F%2Fb%29%28b%2F%2Fa%29%3D%28ab%29%2F%2F%28ab%29%3D1%2F%2F1%3D1

那么这就是我们印象中的倒数,在我们定义的毫无意义的运算符号“//”下也被实现了。这就回到了本节的开头,只是现在,这个方程有解了。现在我们可以定义倒数了:

  • (倒数的定义)记
    equation?tex=x%3Da%2F%2Fb ,则记其倒数
    equation?tex=x%5E%7B-1%7D%3Db%2F%2Fa

当然仍有一点需要声明,即在这个定义中,零是莫得倒数的,至少在没有引入扩充实数系前,我们对此不作研究。现在,有了倒数后,我们终于可以像减法一样定义商了:

  • equation?tex=%5Cdfrac%7Ba%7D%7Bb%7D%3Da%5Ctimes+b%5E%7B-1%7D
    equation?tex=a
    equation?tex=b 的商运算(除法)。

这个定义可以看出

equation?tex=%5Cdfrac%7Ba%7D%7Bb%7D+%3Da%2F%2Fb ,于是之前的毫无意义运算“//”也结束了它的使命。现在我们恢复了所有加减乘除的运算!但我们仍然要整理一下比例数所持有的全部运算律:(所有变量都是比例数)
  • (加法结合律A1)
    equation?tex=x%2B%28y%2Bz%29%3D%28x%2By%29%2Bz
  • (加法交换律A2)
    equation?tex=x%2By%3Dy%2Bx
  • (加法单位元A3)
    equation?tex=x%2B0%3D0%2Bx%3Dx
  • (加法负元A4)
    equation?tex=x%2B%28-x%29%3D0
  • (乘法结合律M1)
    equation?tex=x%28y+z%29%3D%28x+y%29z
  • (乘法交换律M2)
    equation?tex=xy%3Dyx
  • (乘法单位元M3)
    equation?tex=x1%3D1x%3Dx
  • (乘法逆元M4)
    equation?tex=xx%5E%7B-1%7D%3Dx%5E%7B-1%7Dx%3D1
  • (乘法分配律AM)
    equation?tex=x%28y%2Bz%29%3Dxy%2Bxz

乘法逆元中还需要满足

equation?tex=x+%5Cne+0 。现在我们还要重新建立一个能满足比例数的序。首先定义什么是正的有理数,并类似定义比例数的序:
  • 比例数
    equation?tex=x 为正数当且仅当它能被表示为
    equation?tex=x%3D%5Cdfrac%7Ba%7D%7Bb%7D ,其中
    equation?tex=a%2Cb+%5Cin%5Cmathbb%7BN%5E%2A%7D ,其相反数
    equation?tex=-x 是负的. 零既不是正数也不是负数. 记正比例数构成的集合为
    equation?tex=%5Cmathbb%7BQ%5E%2B%7D
  • 我们说
    equation?tex=x%3Cy 当且仅当
    equation?tex=x-y 是一个负数,
    equation?tex=x%3Ey 当且仅当
    equation?tex=x-y是一个正数,并类似定义 “
    equation?tex=%5Cgeq ”与“
    equation?tex=%5Cleq ”两个记号.

根据上述关系,参照整数的情形,我们写出有理数的序公理如下(我知道这套已经看烦了,srds我还是要讲0v0):

  • (自反性O1)
    equation?tex=x%5Cleq+x
  • (反对称性O2)
    equation?tex=x%5Cgeq+y
    equation?tex=y+%5Cgeq+x+%5CLeftrightarrow+x+%3D+y
  • (传递性O3)
    equation?tex=x%5Cgeq+y
    equation?tex=y%5Cgeq+z
    equation?tex=%5CLeftrightarrow
    equation?tex=x%5Cgeq+z
  • (全序性O4)必定成立关系
    equation?tex=x+%5Cleq+y
    equation?tex=x+%5Cgeq+y 中的至少一个
  • (加法保序性AO)
    equation?tex=x%5Cgeq+y
    当且仅当
    equation?tex=x%2Bz%5Cgeq+y%2Bz
  • (乘法保序性MO)若
    equation?tex=x%2Cy%5Cgeq0 ,则
    equation?tex=xy%5Cgeq+0
  • (正乘法保序性)
    equation?tex=a%5Cgeq+b
    当且仅当
    equation?tex=ac%5Cgeq+bc
    equation?tex=c+%5Cne+0
  • (负运算反序性)
    equation?tex=a%3Eb
    当且仅当
    equation?tex=-a%3C-b

另外,Archimetes公理由于与确界原理有不可描述的关系,所以暂时不讲。在上面的过程中,我们成功定义了所有比例数(也就是有理数)。方便起见,我们再来定义绝对值和整数次幂。

  • (绝对值)记
    equation?tex=x 的绝对值(也即到零的欧几里得范数)为
    equation?tex=%7Cx%7C ,满足
    equation?tex=%7C0%7C%3D0 ,对于
    equation?tex=p+%5Cin+%5Cmathbb%7BQ%5E%2B%7D
    equation?tex=%7Cp%7C%3D%7C-p%7C%3Dp
  • (整数次幂)记符号
    equation?tex=x%5E2%3A%3Dx%5Ctimes+x ,
    equation?tex=x%5En%3Dx%5E%7Bn-1%7D%5Ctimes+x ,并定义
    equation?tex=x%5E0%3D1 . 显然,整数次方幂具有性质
    equation?tex=x%5Eax%5Eb%3Dx%5E%7Ba%2Bb%7D ,
    equation?tex=%28x%5Ea%29%5Eb%3Dx%5E%7Bab%7D .

这里值得注意的是,

equation?tex=%28x%5Ea%29%5Eb%3Dx%5E%7Bab%7D这一性质只在整数范围成立,在其它数域中并无此性质。(有无意义的情况,也有复变函数的多值性)

那么,在有了这些数域的基础上,我们将使用严谨的方法构造我们经常使用,并且性质相当好(不可多得)的实数!


2、构造实数

2.1 Archimedes性

在构建实数前,我们先提出Archimedes性。(srds我并不清楚为什么以阿基米德命名)

  • (Archimetes性)对于包含自然数的有序域
    equation?tex=%5Cmathbb%7BF%7D ,若
    equation?tex=%5Cforall+a%2Cb+%5Cin+%5Cmathbb%7BF%7D
    equation?tex=a%3E0
    equation?tex=%5Cexists+%5C%2Cn+%5Cin+%5Cmathbb%7BN%5E%2A%7D 使得
    equation?tex=na%3Eb ,则称有序域
    equation?tex=%5Cmathbb%7BF%7D具有Archimedes性。

首先证明比例数集

equation?tex=%5Cmathbb%7BQ%7D 就是具有Archimedes性的有序域(暂时不用了解一些代数结构的定义)
equation?tex=p%3E0
equation?tex=q 为给定的有理数, 则存在正整数
equation?tex=n 使得
equation?tex=np%3Eq
equation?tex=Proof%EF%BC%9A 不妨设
equation?tex=q%3E0 . 我们有正整数
equation?tex=m_p ,
equation?tex=k_p 以及
equation?tex=k_q ,
equation?tex=m_q

使得
equation?tex=p%3D%5Cdfrac%7Bk_p%7D%7Bm_p%7D ,
equation?tex=q%3D%5Cdfrac%7Bk_q%7D%7Bm_q%7D

equation?tex=n%3Dm_pk_q%2B1 , 即得
equation?tex=np%3Eq

这里之所以称为Archimedes性而非Archimedes定理,是因为它并不对所有有序域成立。下面给出一个反例。

equation?tex=%5Cmathbb%7BR%7D%5Bx%5D 是有理函数
equation?tex=%5Cdfrac%7BP%5Bx%5D%7D%7BQ%5Bx%5D%7D 构成的有序域(其中
equation?tex=P%5Bx%5D
equation?tex=Q%5Bx%5D 是整系数多项式). 令
equation?tex=%5Cmathbb%7BT%7D
equation?tex=%5Cmathbb%7BT%7D%3A%3D%5C%7B%5Cdfrac%7BP%5Bx%5D%7D%7BQ%5Bx%5D%7D%7CP%5Bx%5D+%E4%B8%8E+Q%5Bx%5D%E6%9C%80%E9%AB%98%E6%AC%A1%E9%A1%B9%E7%B3%BB%E6%95%B0%E5%90%8C%E5%8F%B7%5C%7D. 容易证明
equation?tex=%5Cmathbb%7BR%7D%5Bx%5D可被分为
equation?tex=-%5Cmathbb%7BT%7D
equation?tex=0
equation?tex=%5Cmathbb%7BT%7D三个部分。并定义其序关系为
equation?tex=f%3Eg+%5CLeftrightarrow+f-g+%5Cin+%5Cmathbb%7BT%7D .
而考虑
equation?tex=h%28x%29%3Dx ,对于任意正整数
equation?tex=n ,
equation?tex=h%28x%29-n%3Dx-n%3D%5Cdfrac%7Bx-n%7D%7B1%7D%3E0 ,所以
equation?tex=%5Cforall+n+%5Cin+%5Cmathbb%7BN%7D ,
equation?tex=h%28x%29%3En . 这显然是违反Archimedes性的.

有了Archimedes性,我们可以开始构造咕了好久的实数了!


2.2 确界原理:分割即是数

Dedekind分割实则是把

equation?tex=%5Cmathbb%7BQ%7D 劈成两半,即定义集合
equation?tex=U
equation?tex=L ,使得
equation?tex=U+%5Ccap+L%3D+%5Coslash
equation?tex=U+%5Ccup+L+%3D%5Cmathbb%7BQ%7D 。下面给出具体的分割方法:
  • (Dedekind分割)称
    equation?tex=%5Calpha 为分割即满足
  • (1)
    equation?tex=%5Calpha+%5Cne+%5Coslash ,
    equation?tex=%5Calpha+%5Cne+%5Cmathbb%7BQ%7D
  • (2)若
    equation?tex=q+%5Cin+%5Calpha ,
    equation?tex=p%3Cq ,则
    equation?tex=q+%5Cin+%5Calpha
  • (3)
    equation?tex=%5Calpha+ 中没有最大数

接下来就能给出有理与无理的区别了:

  • (有理分割与无理分割)若
    equation?tex=Q+%5Cbackslash+%5Calpha有最小元,则称
    equation?tex=%5Calpha 为有理分割. 反之则称为无理分割.
  • (差集)
    equation?tex=A+%5Cbackslash+B%3A%3D%5C%7Ba%7Ca%5Cin+A%2Ca%5Cnotin+B+%5C%7D

如上定义的无理分割是存在的,这里我们直接引用Rudin的习题:

equation?tex=p%2Cq%2Cr%5Cin+%5Cmathbb%7BQ%7D ,满足
equation?tex=p%3E0
equation?tex=p%5E2%3C2 ,
equation?tex=q%3A%3Dp%2B%5Cdfrac%7B2-p%5E2%7D%7Bp%2B2%7D%3D%5Cdfrac%7B2%2B2p%7D%7Bp%2B2%7D , 则可以证明
equation?tex=q%3Ep
equation?tex=q%5E2%3C2 . 事实上这就是
equation?tex=%5Calpha+%3A%3D%5C%7Bp%7Cp%5Cgeq+0+%2Cp%5E2%5Cleq+2%5C%7D 的一个子列. 这就是一个无理分割,因为有理数中没有一个数1的平方是2. 而这个分割构造出的就是我们熟悉的
equation?tex=%5Csqrt%7B2%7D .

现在,我们记这样的分割

equation?tex=%5Calpha 全体构成的集合为
equation?tex=%5Cmathbb%7BR%5E%2A%7D ,并定义其序
equation?tex=%5Calpha+%5Cleq+%5Cbeta+%5CLeftrightarrow+%5Calpha+%5Csubseteq+%5Cbeta

首先记所有有理分割构成的集合为

equation?tex=%5Cmathbb%7BQ%5E%2A%7D ,有件事是容易理解的,即每个有理分割都对应着一个比例数(无非是把比例数强行扩充成了一个集合)。容易看出
equation?tex=%5Cforall+p%2Cq+%5Cin+%5Cmathbb%7BQ%7D ,并记其对应的比例数为
equation?tex=p%5E%2A%2Cq%5E%2A ,那么它们的序是一模一样的(定义完加乘法,并检验完所有序公理的对应后,我们称之为序同构),即
equation?tex=p%5E%2A+%5Cleq+q%5E%2A+%5CLeftrightarrow+p%3Cq 。重新回忆一遍序公理(不带运算法则的),即
  • (自反性O1)
    equation?tex=x%5Cleq+x
  • (反对称性O2)
    equation?tex=x%5Cgeq+y
    equation?tex=y+%5Cgeq+x+%5CLeftrightarrow+x+%3D+y
  • (传递性O3)
    equation?tex=x%5Cgeq+y
    equation?tex=y%5Cgeq+z
    equation?tex=%5CLeftrightarrow
    equation?tex=x%5Cgeq+z
  • (全序性O4)必定成立关系
    equation?tex=x+%5Cleq+y
    equation?tex=x+%5Cgeq+y
    中的至少一个

O1~O3都是显然的,O4实则集合缝缝补补的事儿,这件事由读者从定义出发自行证明(留做习题)。由这件事,我们终于明白为什么有“有理数”这个名称了。今后我们一律放弃使用“比例数”的称呼,统一改成舒服的“有理数”。接着引出稠密性。

(有理分割的稠密性)若
equation?tex=%5Calpha+%3C+%5Cbeta+ , 则存在有理数
equation?tex=p 使得
equation?tex=%5Calpha+%3C+p%5E%2A+%3C+%5Cbeta
equation?tex=Proof%EF%BC%9A
equation?tex=p_0+%5Cin+%28%5Calpha+%5Cbackslash+%5Cbeta%29%5Ccap+%5Cmathbb%7BQ%5E%2A%7D ,于是存在
equation?tex=p+%5Cin+%5Cmathbb%7BQ%7D 使得
equation?tex=p+%3E+p_0
equation?tex=p+%5Cin+%5Cbeta

此时我们有
equation?tex=%5Calpha+%5Cleq+p_0%5E%2A%3Cp%5E%2A%3C%5Cbeta . 那这就完事了。

稠密性这东西以后还会重申,是个很好玩的东西。这里由于没有足够的工具,暂且不深入讨论。接下来我们要介绍数学分析的一个重要概念:界

  • (上下界)对于
    equation?tex=E%5Csubset+R ,若
    equation?tex=%5Cbeta+%5Cin+%5Cmathbb%7BR%7D 满足
    equation?tex=%5Cforall+%5Calpha+%5Cin+E ,
    equation?tex=%5Calpha+%5Cleq+%5Cbeta%EF%BC%88%5Calpha+%5Cgeq+%5Cbeta%EF%BC%89则称
    equation?tex=%5Cbeta
    equation?tex=E 的上(下)界.
  • (上下确界)若存在
    equation?tex=%5Cgamma+%5Cin+%5Cmathbb%7BR%5E%2A%7D 满足
    equation?tex=%5Cgamma
    equation?tex=E 的上(下)界, 且但凡
    equation?tex=%5Cdelta+
    equation?tex=E 的上(下)界,则
    equation?tex=%5Cgamma+%5Cleq+%5Cdelta%EF%BC%88%5Calpha+%5Cgeq+%5Cdelta%EF%BC%89 ,则称
    equation?tex=%5Cgamma
    equation?tex=E 的上(下)确界,记作
    equation?tex=%5Csup+E
    equation?tex=%5Cinf+E ). 按照这个定义,它当然也可以叫最小上(下)界. 若非空集合
    equation?tex=E 无上界,则记
    equation?tex=%5Csup+E%3D%2B%5Cinfty 类似定义
    equation?tex=%5Cinf+E+%3D+-%5Cinfty 为无下界.
  • 另外规定
    equation?tex=%5Csup+%5Coslash%3D-+%5Cinfty ,
    equation?tex=%5Cinf+%5Coslash+%3D%2B%5Cinfty
    . 这样便可以到出空集“空无一物”的事实.

有了确界的定义后,指出一个重要的定理(它对于实数成立,但鉴于我们还没有提及实数这个东西,暂时记作

equation?tex=%5Cmathbb%7BR%5E%2A%7D )。
(确界存在原理)
equation?tex=%5Cmathbb%7BR%5E%2A%7D
中的任何非空上有界集均有上确界.
equation?tex=Proof%EF%BC%9A
equation?tex=E 是一个非空上有界集,设
equation?tex=%5Cgamma
equation?tex=E 的一个上界. 令
equation?tex=%5Cbeta+%3A%3D%5Cmathop%5Ccup%5Climits_%7B%5Calpha+%5Cin+E%7D+%5Calpha .

接下来,我们验证
equation?tex=%5Cbeta 是一个分割.(通过定义逐一验证)

(1) 由于
equation?tex=E 非空, 故
equation?tex=%5Cbeta+%5Cne+%5Coslash . 进一步,由于
equation?tex=%5Cgamma+%5Cne+%5Cmathbb%7BQ%7D, 故有
equation?tex=p+%5Cnotin+%5Cgamma . 那么对于

任何
equation?tex=q+%5Cin+%5Calpha+%5Cin+E
equation?tex=q%3Cp . 因此
equation?tex=p+%5Cnotin+%5Cbeta , 所以
equation?tex=%5Cbeta+%5Cne+%5Cmathbb%7BQ%7D

(2) 若
equation?tex=q+%5Cin+%5Cbeta ,
equation?tex=p%3Cq , 则有
equation?tex=%5Calpha+%5Cin+E 使得
equation?tex=q+%5Cin+%5Calpha ,从而
equation?tex=p+%5Cin+%5Calpha+%5Csubseteq+%5Cbeta

(3) 若
equation?tex=p+%5Cin+%5Cbeta , 则存在
equation?tex=%5Calpha+%5Cin+E 使得
equation?tex=p+%5Cin+%5Calpha . 从而有
equation?tex=q%3Ep 使得
equation?tex=q+%5Cin+%5Calpha . 固

equation?tex=q+%5Cin+%5Cbeta . 因此
equation?tex=%5Cbeta 中没有最大元.

以上三条验证了
equation?tex=%5Cbeta 是一个分割.

显然
equation?tex=%5Cbeta
equation?tex=E 的一个上界. 而若
equation?tex=%5Csigma+
equation?tex=E 的另一个上界,则
equation?tex=%5Cforall+%5Calpha+%5Cin+E ,
equation?tex=%5Calpha+%5Csubseteq+%5Csigma,

从而
equation?tex=%5Cbeta+%3D%5Cmathop%5Ccup%5Climits_%7B%5Calpha+%5Cin+E%7D+%5Calpha+%5Csubseteq+%5Csigma. 这就说明了
equation?tex=%5Cbeta 其实还是上确界.

有了上确界与有理数稠密性,现在我们终于能给出实数的定义了。我们将实数定义为有理分割集(注意!是集合)的上确界。这也照应了标题中所阐述的那句话:分割即是数!

(分割定义实数的合理性)
equation?tex=Proof%EF%BC%9A 利用有理分割的稠密性, 立即可得
equation?tex=%5Calpha+%3D+%5Csup%5C%7Bp%5E%2A%7Cp%5E%2A%3C%5Calpha%5C%7D

equation?tex=%5Cbeta+%5Cequiv+%5Csup%5C%7Bp%5E%2A%7Cp%5E%2A%3C%5Calpha+%5C%7D%3C+%5Calpha , 则由有理分割的稠密性可得, 存在
equation?tex=q 使得
equation?tex=%5Cqquad+%5Cqquad+%5C%2C+%5Cbeta+%3C+q%5E%2A%3C%5Calpha . 所以
equation?tex=q%5E%2A+%5Cin+%5C%7Bp%5E%2A%7Cp%5E%2A%3C%5Calpha+%5C%7D . 由
equation?tex=%5Cbeta 的定义,又得
equation?tex=%5Cbeta+%5Cgeq+q%5E%2A .

矛盾!因此这样的实数是well defined的.

至此我们已经获得了全体实数。但目前我们得到的只是数字,并不能开始“玩”这些数字。所以接下来,我们定义实数的加法与乘法。

  • (实数的加法)
    equation?tex=%5Calpha+%2B%5Cbeta+%3A%3D%5Csup+E_%7B%5Calpha+%2C%5Cbeta%7D , 其中
    equation?tex=E_%7B%5Calpha+%2C%5Cbeta%7D%3A%3D%5C%7B%28p%2Bq%29%5E%2A%7Cp%5E%2A%5Cleq+%5Calpha+%2C+q%5E%2A%5Cleq+%5Cbeta%5C%7D 显然
    equation?tex=%28p%2Bq%29%5E%2A
    equation?tex=E_%7Bp%5E%2A+%2Cq%5E%2A%7D 的最大值, 因此
    equation?tex=%28p%2Bq%29%5E%2A%3Dp%5E%2A%2Bq%5E%2A . 这与有理数的加法是一致的.
  • (实数的乘法)对于
    equation?tex=%5Calpha%2C+%5Cbeta%3E+0%5E%2A , 定义
    equation?tex=%5Calpha+%5Cbeta+%3A%3D%5Csup+M_%7B%5Calpha%2C%5Cbeta%7D , 这里定义
    equation?tex=M_%7B%5Calpha%2C%5Cbeta%7D
    equation?tex=M_%7B%5Calpha%2C%5Cbeta%7D%3A%3D%5C%7B%28pq%29%5E%2A%7C0%5E%2A%3Cp%5E%2A%5Cleq+%5Calpha%2C0%5E%2A%3Cq%5E%2A%5Cleq+%5Cbeta%5C%7D
    其适当性是显然的,对于其他情形,补充定义:
    equation?tex=%5Cqquad+%5Cqquad+%5Cqquad+%5Calpha+%5Cbeta+%3A%3D%5Cleft%5C%7B++%5Cbegin%7Baligned%7D+%7B%7D+0%5E%2A%2C%5Cqquad+%5Cquad%5Calpha%3D0%5E%2A%E6%88%96%5Cbeta%3D0%5E%2A+%5C%5C+-%28%28-%5Calpha%29%5Cbeta%29%2C+%5C%2C+%5Calpha%3C0+%5E%2A%2C%5Cbeta%3E0%5E%2A%5C%5C+-%28%5Calpha%28-%5Cbeta%29%29%2C+%5C%2C+%5Calpha%3E0%5E%2A%2C%5Cbeta%3C0%5E%2A%5C%5C+%28-%5Calpha%29%28-%5Cbeta%29%2C+%5C%2C+%5Calpha%3C0%5E%2A%2C%5Cbeta%3C0%5E%2A+%5Cend%7Baligned%7D+%5Cright.
    equation?tex=%5Cquad
    equation?tex=%5Cqquad+%5Cqquad 这里也可以验证与有理数的乘法是一致的.

这里的序就不再定义了,它能由集合的包含关系简单推出,自然也满足序的四条公理。在接下来一节中,我们将验证实数的运算律。鉴于其难度,我们将全部给出详细证明。


2.3 实数运算律的检验

注意!本节内容可能引起不适!(至少我最先接触时,没能直接跟上)

先验证加法上的运算律与序公理:

(加法交换律A2)
equation?tex=%5Calpha+%2B+%5Cbeta+%3D%5Cbeta+%2B+%5Calpha
equation?tex=Proof%EF%BC%9A 由于
equation?tex=E_%7B%5Calpha%2C%5Cbeta%7D%3DE_%7B%5Cbeta%2C%5Calpha%7D , 那么这件事已经做完了.

其次是零元

(加法零元A3)成立
equation?tex=%5Calpha+%2B0%5E%2A%3D%5Calpha
equation?tex=Proof%EF%BC%9A 由于
equation?tex=E_%7B%5Calpha%2C0%5E%2A%7D%3D%5C%7Bp%5E%2A%7Cp%5E%2A%5Cleq+%5Calpha%5C%7D , 固然
equation?tex=%5Calpha+%2B+0%5E%2A%3D%5Calpha .

其次是加法保序性,在此之前先证明一条引理:

(引理1)设
equation?tex=%5Calpha+%5Cin+%5Cmathbb%7BR%5E%2A%7D ,
equation?tex=r+%5Cin+%5Cmathbb%7BQ%5E%2B%7D , 则存在
equation?tex=p+%5Cin+%5Cmathbb%7BQ%7D 使得
equation?tex=p%5E%2A%3C%5Calpha%3C%28p%2Br%29%5E%2A
equation?tex=Proof%EF%BC%9A
equation?tex=p_0+%5Cin+%5Calpha 以及
equation?tex=q+%5Cnotin+%5Calpha , 记
equation?tex=p_k%3Dp_0%2B%5Cdfrac%7Bkr%7D%7B2%7D ,
equation?tex=k+%5Cin+%5Cmathbb%7BN%5E%2A%7D ,

由有理数的Archimetes性得, 存在正整数
equation?tex=n 使得
equation?tex=p_n%3Eq .

从而
equation?tex=p_n+%5Cnotin+%5Calpha . 设
equation?tex=m 为使得
equation?tex=p_m+%5Cnotin+%5Calpha 成立的最小正整数.

equation?tex=p%3Dp_%7Bm-1%7D , 则有
equation?tex=p%5E%2A%3C+%5Calpha+%5Cleq+%28p%2B%5Cdfrac%7Br%7D%7B2%7D%29%5E%2A%3C%28p%2Br%29%5E%2A

这是个看起来十分trivial的结论,但在接下来证明运算律时发挥了不小作用。

(加法保序性AO)若
equation?tex=%5Calpha+%3C+%5Cbeta ,
equation?tex=%5Calpha+%2B+%5Cgamma+%3C+%5Cbeta+%2B+%5Cgamma
equation?tex=Proof%EF%BC%9A 有一点是显然的,即
equation?tex=E_%7B%5Calpha%2C%5Cgamma%7D+%5Csubseteq+E_%7B%5Cbeta%2C%5Cgamma%7D , 因此
equation?tex=%5Calpha+%2B+%5Cgamma+%5Cleq+%5Cbeta+%2B+%5Cgamma

而由于有理分割的稠密性,存在
equation?tex=p ,
equation?tex=q 使得
equation?tex=%5Calpha+%3C+p%5E%2A+%3C+q%5E%2A+%3C+%5Cbeta

equation?tex=s%3D%5Cdfrac%7Bq-p%7D%7B2%7D , 则又有
equation?tex=r 使得
equation?tex=r%5E%2A%3C%5Cgamma+%3C%28r%2Bs%29%5E%2A , 从而
equation?tex=%5Cqquad+%5Cqquad+%5C%2C+%5Calpha%2B%5Cgamma+%5Cleq+p%5E%2A%2B%28r%2Bs%29%5E%2A%3D%28p%2Bs%29%5E%2A%2Br%5E%2A%5Cleq+q%5E%2A%2Br%5E%2A+%5Cleq+%5Cbeta+%2B+%5Cgamma

为什么把加法结合律放在后面呢?因为这件事并不容易。我们需要先证得另一条引理:

(引理2)若对于任何正有理数
equation?tex=s ,
equation?tex=%5Calpha+%5Cleq+%5Cbeta+%2Bs%5E%2A
, 则
equation?tex=%5Calpha+%5Cleq+%5Cbeta
equation?tex=Proof%EF%BC%9A 若不然,则
equation?tex=%5Cbeta+%3C+%5Calpha . 由有理分割的稠密性,

存在
equation?tex=p ,
equation?tex=q使得
equation?tex=%5Cbeta+%3Cp%5E%2A%3Cq%5E%2A%3C+%5Calpha

equation?tex=s%3Dq-p ,则
equation?tex=s%3E0 ,

equation?tex=%5Cbeta+%2Bs%5E%2A%3Cp%5E%2A%2Bs%5E%2A%3Dq%5E%2A%3C%5Calpha ,与题设矛盾!故得证.

下面,我们将用此引理证明加法结合律,负元与实数的Archimetes性。

(加法结合律A1)
equation?tex=%28%5Calpha+%2B+%5Cbeta%29+%2B+%5Cgamma+%3D+%5Calpha+%2B+%28%5Cbeta+%2B+%5Cgamma%29
equation?tex=Proof%EF%BC%9A 由引理1得,对于任何
equation?tex=s%3E0
equation?tex=p ,
equation?tex=q ,
equation?tex=r 使得
equation?tex=p%5E%2A%3C%5Calpha%3C%28p%2B%5Cdfrac%7Bs%7D%7B3%7D%29%5E%2A ,
equation?tex=%5Cqquad+%5Cqquad+%5C%2C+q%5E%2A%3C%5Cbeta%3C%28q%2B%5Cdfrac%7Bs%7D%7B3%7D%29%5E%2A,
equation?tex=r%5E%2A%3C%5Cgamma%3C%28r%2B%5Cdfrac%7Bs%7D%7B3%7D%29%5E%2A

于是利用加法保序性得:
equation?tex=%5Cqquad+%5Cqquad+%5Calpha+%2B%28%5Cbeta+%2B+%5Cgamma%29+%5Cleq+p%5E%2A%2Bq%5E%2A%2Br%5E%2A%2Bs%5E%2A+%5Cleq+%28%28%5Calpha+%2B+%5Cbeta%29%2B+%5Cgamma%29%2Bs%5E%2A
equation?tex=%5Cqquad+%5Cqquad+%28%5Calpha+%2B%5Cbeta%29+%2B+%5Cgamma+%5Cleq+p%5E%2A%2Bq%5E%2A%2Br%5E%2A%2Bs%5E%2A+%5Cleq+%28%5Calpha+%2B+%28%5Cbeta%2B+%5Cgamma%29%29%2Bs%5E%2A

由引理2得
equation?tex=%28%5Calpha+%2B+%5Cbeta%29+%2B+%5Cgamma+%3D+%5Calpha+%2B+%28%5Cbeta+%2B+%5Cgamma%29
(实数的Archimedes性)设
equation?tex=%5Calpha%3E0%5E%2A ,
equation?tex=%5Cbeta+%5Cin+%5Cmathbb%7BR%7D . 则由正整数
equation?tex=n 使得
equation?tex=n%5Calpha%3E%5Cbeta
equation?tex=Proof%EF%BC%9A存在有理分割
equation?tex=0%5E%2A%3Cp%5E%2A%3C%5Calpha+
equation?tex=q%5E%2A%3E%5Cbeta 成立.

equation?tex=%5Cmathbb%7BQ%7D 中的Archimedes性得, 存在正整数
equation?tex=n 使得
equation?tex=np%3Eq . 从而
equation?tex=%5Cqquad+%5Cqquad+%5C%2C+n%5Calpha+%5Cgeq+np%5E%2A%3D%28np%29%5E%2A%3Eq%5E%2A%3E%5Cbeta
(加法负元A4)验证在实数中的加法负元
equation?tex=Proof%EF%BC%9A 对于
equation?tex=%5Calpha+%5Cin+%5Cmathbb%7BR%7D , 令
equation?tex=E%3A%3D%5C%7B%5Cgamma%7C%5Cgamma+%2B+%5Calpha+%5Cleq+0%5E%2A%5C%7D . 接下来证明该集合的上确界为
equation?tex=%5Calpha+

的负元.
对于任何
equation?tex=s%3E0 , 存在
equation?tex=p+ 使得
equation?tex=p%5E%2A%3C%5Calpha%3C%28p%2Bs%29%5E%2A . 于是, 由加法保序性知
equation?tex=%5Cqquad+%5Cqquad+%5C%2C+0%5E%2A%3C%5Calpha+%2B+%28-p%29%5E%2A 以及
equation?tex=%5Calpha%2B%28-p-s%29%5E%2A%3C0 .

因此
equation?tex=E 非空有上界,从而其上确界存在,且
equation?tex=%28-p-s%29%5E%2A+%5Cleq+%5Cbeta+%5Cleq+%28-p%29%5E%2A

故我们有
equation?tex=%5Calpha+%2B+%5Cbeta+%5Cleq+%28p%2Bs%29%5E%2A%2B%28-p%29%5E%2A%3Ds%5E%2A

equation?tex=0%5E%2A%3Dp%5E%2A%2B%28-p-s%29%5E%2A%2Bs%5E%2A+%5Cleq+%5Calpha+%2B+%5Cbeta+%2Bs%5E%2A

由引理2得
equation?tex=%5Calpha+%2B+%5Cbeta+%3D+0%5E%2A

如上所示,我们完成了实数加法的验证。这些内容并不简单,甚至相当繁琐。而下面对于乘法的验证更不会轻松。乘法交换律,乘法单位元与乘法保序性同加法的情况相似,这里不再给出证明。

(乘法结合律M1)成立
equation?tex=%5Calpha%28%5Cbeta%5Cgamma%29%3D%28%5Calpha%5Cbeta%29%5Cgamma
equation?tex=Proof%EF%BC%9A 其实只做出恒正的情况即可。任取
equation?tex=s%3E0 , 考虑
equation?tex=0%5E%2A%3Cp%5E%2A%5Cleq+%5Calpha ,
equation?tex=%5Cqquad+%5Cqquad+%5C%2C+0%5E%2A%3Cu%5E%2A%3C%28%5Cbeta%5Cgamma%29%5E%2A . 依据乘法定义有
equation?tex=0%5E%2A%3C+q%5E%2A+%5Cleq+%5Cbeta ,
equation?tex=0%5E%2A%3Cr%5E%2A%5Cleq+%5Cgamma+

使得
equation?tex=%5Cbeta+%5Cgamma+%5Cleq+%28qr%29%5E%2A%2B%28%5Cdfrac%7Bs%7D%7Bp%7D%29%5E%2A . 从而:
equation?tex=%28pu%29%5E%2A+%5Cleq+%28pqr%2Bs%29%5E%2A%3D%28pqr%29%5E%2A%2Bs%5E%2A+%5Cleq+%28%5Calpha%5Cbeta%29%5Cgamma+%2Bs%5E%2A

再由乘法定义即得
equation?tex=%5Calpha%28%5Cbeta%5Cgamma%29+%5Cleq+%28%5Calpha%5Cbeta%29%5Cgamma%2Bs%5E%2A

同理得
equation?tex=%28%5Calpha%5Cbeta%29%5Cgamma+%5Cleq+%5Calpha%28%5Cbeta%5Cgamma%29%2Bs%5E%2A

equation?tex=%5Calpha%28%5Cbeta%5Cgamma%29%3D%28%5Calpha%5Cbeta%29%5Cgamma
(乘法逆元)这里我们先证明乘法逆元在实数中保持,其实是为了证明乘法分配律时方便w
equation?tex=Proof%EF%BC%9A
equation?tex=%5Calpha+%3E+0%5E%2A ,下证
equation?tex=%5Cbeta%3A%3D%5Csup%5C%7B%5Cgamma%7C0%5E%2A%3C%5Cgamma%5Calpha+%5Cleq+1%5E%2A%5C%7D 就是我们要求的逆元.
equation?tex=%5Cqquad+%5Cqquad+%5C%2C+%5Cforall+s%3E0 , 取
equation?tex=0%5E%2A%3Cq%5E%2A%3C%5Calpha ,
equation?tex=s%27%3Dsq , 由引理1得存在
equation?tex=p+%5Cgeq+q 使得
equation?tex=%5Cqquad+%5Cqquad+%5C%2C+p%5E%2A%3C%5Calpha%3C%28p%2Bs%27%29%5E%2A , 从而由乘法保序性得
equation?tex=%5Cqquad+%5Cqquad+%5Cqquad+%5Cqquad+%5C%2C+0%5E%2A%3C%28%5Cdfrac%7B1%7D%7Bp%2Bs%27%7D%29%5E%2A%5Calpha%3C1%5E%2A%3C%28%5Cdfrac%7B1%7D%7Bp%7D%29%5E%2A%5Calpha

再由
equation?tex=%5Cbeta 的定义得
equation?tex=%28%5Cdfrac%7B1%7D%7Bp%2Bs%27%7D%29%5E%2A+%5Cleq+%5Cbeta+%5Cleq+%28%5Cdfrac%7B1%7D%7Bp%7D%29%5E%2A

从而
equation?tex=%5Calpha+%5Cbeta+%5Cleq+%28p%2Bs%27%29%5E%2A%28%5Cdfrac%7B1%7D%7Bp%7D%29%5E%2A%5Cleq+1%5E%2A+%2B+s%5E%2A ,

equation?tex=1%5E%2A%3Dp%5E%2A%28%5Cdfrac%7B1%7D%7Bp%2Bs%27%7D%29%5E%2A%2B%28%5Cdfrac%7Bs%27%7D%7Bp%2Bs%27%7D%29%5E%2A+%5Cleq+%5Calpha+%5Cbeta+%2B+s%5E%2A

equation?tex=%5Calpha%5Cbeta%3D1%5E%2A

负元情形可类似证明. (乘法分配律AM)成立
equation?tex=%5Calpha%28%5Cbeta%2B%5Cgamma%29%3D%5Calpha%5Cbeta%2B%5Calpha%5Cgamma
equation?tex=Proof%EF%BC%9A
equation?tex=%5Calpha+%3D+0 的情形不值一证. 显然只要证明如下命题:(由于逆元,只要证一端)
equation?tex=%5Cqquad+%5Cqquad+%5Cqquad+%5Cqquad+%5C%2C+%5Cbeta%2B%5Cgamma%2B%5Cdelta%3D0%5E%2A+%5CRightarrow+%5Calpha%5Cbeta%2B%5Calpha%5Cgamma%2B%5Calpha%5Cdelta%3D0%5E%2A

下面只考虑
equation?tex=%5Calpha ,
equation?tex=%5Cbeta ,
equation?tex=%5Cgamma 都是正数的情形:

此时存在有理数
equation?tex=u 使得
equation?tex=2%5Calpha%2B%5Cbeta%2B%5Cgamma%3Cu%5E%2A

进一步地,对于任何
equation?tex=s%3E0 , 可取
equation?tex=s%27%3D%5Cdfrac%7Bs%7D%7Bu%2B1%2B2s%7D%3E0 使得存在有理数
equation?tex=%5Cqquad+%5Cqquad+%5C%2C+p ,
equation?tex=q ,
equation?tex=r 满足:
equation?tex=%5Cqquad+%5Cqquad+%5C%2C+p%5E%2A%3C%5Calpha%3C%28p%2Bs%27%29%5E%2A ,
equation?tex=q%5E%2A%3C%5Cbeta%3C%28q%2Bs%27%29%5E%2A ,
equation?tex=r%5E%2A%3C%5Cgamma%3C%28r%2Bs%27%29%5E%2A

此时必有
equation?tex=%28p%2Bs%27%29%28q%2Br%2B2s%27%29%5Cleq+p%28q%2Br%29%2Bs

由保序性得到:
equation?tex=%5Cqquad+%5Cqquad+%5C%2C+%5Calpha%28%5Cbeta%2B%5Cgamma%29+%5Cleq+%28pq%2Bpr%2Bs%27%29%5E%2A+%5Cleq+%28%5Calpha%5Cbeta%2B%5Calpha%5Cgamma%29%2Bs%5E%2A
equation?tex=%5Cqquad+%5Cqquad+%5C%2C+%5C%2C+%5Calpha%5Cbeta%2B%5Calpha%5Cgamma%5Cleq+%28p%28q%2Br%29%2Bs%27%29%5E%2A+%5Cleq+%28%5Calpha%28%5Cbeta%2B%5Cgamma%29+%29%2Bs%5E%2A

所以
equation?tex=%5Calpha%28%5Cbeta%2B%5Cgamma%29%3D%5Calpha%5Cbeta%2B%5Calpha%5Cgamma

如上,我们验证了实数中所有的加法,乘法,逆元与序的性质。爽就完事了,老实说第一次看这东西时,还是有些懵逼的。不过至少,它们都是正确的。但这里有个好问题,即实数域能否再次扩充,即加进新的元素。答案是:实数已经是最大的全序域了,若抛弃掉序的性质,那么它的最大扩充即是二次扩充,也就是复数域。下面一节中,我们将对此作证明以结束本文的正式内容。

2.4 实数的完备性

数系的完备性是指它保持原有性质时,不能再添别的东西进来了,即这是个满载的数系。

回顾一下,本文建立的数其实只有一个”实际存在“基石:

equation?tex=%5Coslash 。这是件神奇的事儿。我们一路上从自然数到整数,到有理数,再到实数。那在此有一问:如果保持我们所提及的公理,那么这个过程还能继续下去嘛?答案是否定的。
(实数的完备性)若
equation?tex=%5Cmathbb%7BR%5E%2A%7D+%5Csupseteq+%5Cmathbb%7BR%7D 满足所有的域、序公理与Archimedes性,则
equation?tex=%5Cmathbb%7BR%5E%2A%7D+%3D+%5Cmathbb%7BR%7D
equation?tex=Proof%EF%BC%9A 若非,则存在
equation?tex=%5Ceta+%5Cin+%5Cmathbb%7BR%5E%2A%7D+%5Cbackslash+%5Cmathbb%7BR%7D

由加法公理, 若
equation?tex=%5Calpha+%5Cin+%5Cmathbb%7BR%5E%2A%7D 满足
equation?tex=%5Calpha%2B%5Calpha%3D%5Calpha , 则易证
equation?tex=%5Calpha%3D0 , 可见
equation?tex=0%5E%2A
equation?tex=%5Cqquad+%5Cqquad+%5C%2C+%5Cmathbb%7BR%5E%2A%7D 中的零元. 同理,
equation?tex=1%5E%2A
equation?tex=%5Cmathbb%7BR%5E%2A%7D中的单位元.

再由Archimedes性得,存在正整数
equation?tex=n%5E%2A%3E%5Cpm+%5Ceta%5E%2A , 因此
equation?tex=%5Ceta%5E%2A%3E-n%5E%2A

令非空有上界集
equation?tex=E%3A%3D%5C%7B%5Calpha%5Cin%5Cmathbb%7BR%7D%7C%5Calpha%5Cleq%5Ceta%5E%2A%5C%7D , 并令
equation?tex=%5Cbeta+%3D%5Csup_%5Cmathbb%7BR%7D+E .

equation?tex=%5Ceta%5E%2A%3E%5Cbeta , 则
equation?tex=%5Cbeta-%5Ceta%5E%2A%3E0%5E%2A . 再由Archimedes性得存在正整数
equation?tex=m 使得

成立
equation?tex=m%28%5Ceta%5E%2A-%5Cbeta%29%3E1%5E%2A%3Dm%28%5Cdfrac%7B1%7D%7Bm%7D%29%5E%2A . 故
equation?tex=%5Ceta%5E%2A-%5Cbeta+%5Cgeq+%28%5Cdfrac%7B1%7D%7Bm%7D%29%5E%2A .故成立
equation?tex=%5Cqquad+%5Cqquad+%5C%2C+%28%5Cdfrac%7B1%7D%7Bm%7D%29%5E%2A%2B%5Cbeta+%5Cin+E , 与
equation?tex=%5Cbeta
equation?tex=E 的上确界矛盾.

equation?tex=%5Ceta%5E%2A%3C%5Cbeta , 则存在正整数
equation?tex=m 成立
equation?tex=m%28%5Cbeta-%5Ceta%5E%2A%29%3E1%5E%2A .这说明对于任何
equation?tex=%5Cqquad+%5Cqquad+%5C%2C+%5Cgamma+%5Cin+E , 成立
equation?tex=%5Cbeta-%28%5Cdfrac%7B1%7D%7Bm%7D%29%5E%2A+%5Cgeq+%5Ceta%5E%2A+%5Cgeq+%5Cgamma , 再次与
equation?tex=%5Cbeta 的定义矛盾.

因此
equation?tex=%5Cbeta+%3D+%5Ceta%5E%2A . 仍是实数的一元.

本文到这里就结束啦~如果由小可爱对于其中的技术细节感兴趣,可以阅览《陶哲轩实分析》中的前几章或Rudin中的相关内容。(其实我也不是很清楚教材这方面的事儿)总之,我们虽然经常使用实数,但首先实数并不是实际存在的数——它是构造出来的。其次,实数并不是理所当然的数系。小学作业本上的算式也许每一步都包含了十几步的证明。也许读完后,仍然不能完全回忆起所有的技术细节,但体会其来之不易也总是好的。有了实数后,下篇开始将会阐述数列极限的重要的事儿。

那么第一篇文章就这样结束啦!鉴于是第一次在知乎写长文,文字与编排方面仍有很多不足qwq希望大家能多多支持。我们下期再见~

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值