python stacking_一文看懂Stacking!(含Python代码)

艾伦 Visual Studio 批量自动化代码操作工具-VS插件发布

艾伦 Visual Studio 批量自动化代码操作工具 以下简称--艾伦工具箱. 艾伦工具箱是一个多文件批量处理插件,目的是为了广大开发者提高开发效率,减少项目代码规范化审计,缩短开发者的项目开发周 ...

Boost学习笔记(六) progress_display注意事项

progress_display可以用作基本的进度显示,但它有个固有的缺陷:无法把进度显示输出与程序的输出分离. 这是因为progress_display和所有C++程序一样,都向标准输出(cout) ...

PHP协程 详解

[开源中国] PHP 使用协同程序实现合作多任务 [风雪之隅] 在PHP中使用协程实现多任务调度

Convert.ChangeType转换泛型的性能损失测试

经常要传入参数包,当时一直是用泛型+ChangeType解决的.测试了下,看来这样确实慢了. 另外,可能都会认为Release发布之后会被优化掉.但测试了Release和Debug结果一样慢,比较失望 ...

iOS 开发 NSLog调试小技巧

NSLog其实是一个非常损耗性能的东西,当你在开发了很长时间的一个项目中,想必为了方便调试,里面会有很多的NSLog输出,为了优化性能,同时又方便调试,可以在pch中定义一个宏,既可以替换原有的NSL ...

javascript基础学习(九)

javascript之基本包装类型 学习要点: 基本包装类型概述 Boolean类型 Number类型 String类型 一.基本包装类型概述 为了便于操作基本类型值,提供了3种特殊的引用类型:Boo ...

4-Bom&Dom总结篇

其实Bom就是指浏览器的东西,比如弹窗啊.浏览器信息啊等 而Dom则是指文档的东西,就是浏览器里边html的东西,如元素啊.属性啊.事件什么的 但Bom的唯一顶层对象window又包含Dom的顶层对象 ...

SpringMVC的数据转换,格式化和数据校验

在SpringMVC中,根据请求方法签名不同,将请求消息中的消息以一定的方式转换并绑定到请求方法的参数中,在请求信息到达真正调用处理方法的这一段时间内,SpringMVC还会完成很多其他的 ...

cocos图片的选择以及压缩

我们在使用cocos在windows平台下,运行速度很快很流畅,很强大,可是当我们打包成apk文件,在手机上运行的时候,流畅度很可能降低,甚至还有间歇性内存彪高. 游戏内存优化我们一般可以从这么3个方 ...

linux 安装crontab执行定时任务

转载:https://www.cnblogs.com/xiaoluo501395377/archive/2013/04/06/3002602.html http://yangqijun.iteye.c ...

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
下面是一个使用Python实现Stacking的示例代码,以分类问题为例: ```python # 导入必要的库 from sklearn.datasets import make_classification from sklearn.model_selection import cross_val_score, KFold from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import LogisticRegression import numpy as np # 创建一个分类数据集 X, y = make_classification(n_samples=1000, n_features=10, n_informative=5, n_redundant=0, random_state=1) # 定义基础模型 models = [] models.append(RandomForestClassifier(n_estimators=100, random_state=1)) models.append(GradientBoostingClassifier(n_estimators=50, random_state=1)) models.append(KNeighborsClassifier()) # 定义元模型 meta_model = LogisticRegression() # 定义Stacking函数 def stacking(models, meta_model, X_train, y_train, X_test, k): # 使用KFold将训练数据集分成k个折叠 kf = KFold(n_splits=k, shuffle=True, random_state=1) # 创建一个数组来保存每个基础模型的预测结果 train_meta_features = np.zeros((X_train.shape[0], len(models))) test_meta_features = np.zeros((X_test.shape[0], len(models))) # 针对每个基础模型进行训练和预测 for i, model in enumerate(models): # 针对每个折叠进行训练和预测 for train_index, test_index in kf.split(X_train): # 获取训练数据和测试数据 X_train_fold, X_test_fold = X_train[train_index], X_train[test_index] y_train_fold = y_train[train_index] # 针对当前基础模型进行训练和预测 model.fit(X_train_fold, y_train_fold) train_meta_features[test_index, i] = model.predict(X_test_fold) # 针对当前基础模型进行预测测试数据 test_meta_features[:, i] = model.predict(X_test) # 使用元模型对基础模型的预测结果进行训练和预测 meta_model.fit(train_meta_features, y_train) y_pred = meta_model.predict(test_meta_features) return y_pred # 使用Stacking进行分类预测 y_pred = stacking(models, meta_model, X, y, X, 5) # 输出预测结果 print(y_pred) ``` 上述代码,我们使用了三个基础模型(随机森林、梯度提升树和K近邻)和一个元模型(逻辑回归),并将数据集分成了5个折叠。在Stacking函数,我们首先使用KFold将训练数据集分成5个折叠,并使用每个基础模型对每个折叠进行训练和预测,将预测结果保存到一个二维数组。然后,我们使用元模型对基础模型的预测结果进行训练和预测,并返回最终的预测结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值