集成学习

目录

 

集成学习

集成学习-个体学习器

集成学习-boosting

集成学习-bagging

集成学习-结合策略

平均法

投票法

学习法


集成学习

         集成学习(ensemble learning)----通过构建并结合多个机器学习器来完成学习任务的机器学习算法。


集成学习用于: 1)分类问题集成

                          2)回归问题集成

                          3)特征选取集成

                          4)异常点检测集成


集成学习主要问题:1)是如何得到若干个个体学习器;

                                 2)如何选择一种结合策略,将这些个体学习器集合成一个强学习器。

集成学习-若干个个体学习器分为:同质、异质。

同质:所有的个体学习器都是一个种类的(比如:都是决策树/神经网络的个体学习器);

------同质依赖关系:1)存在强依赖关系,一系列个体学习器基本都需要串行生成(boosting系列算法)。

                                 2)不存在强依赖关系,一系列个体学习器可以并行生成(bagging和随机森林(Random Forest)系列算法)。

异质:所有的个体学习器不全是一个种类的(比如:分类问题,对训练集采用支持向量机、逻辑回归、朴素贝叶斯的个体学习器来学习,再通过某种结合策略来确定最终的分类强学习器)。


集成学习-个体学习器

集成学习-boosting

boosting的算法原理

Boosting算法的工作机制

       1)首先从训练集用初始权重训练出一个弱学习器1,根据弱学习的学习误差率表现来更新训练样本的权重,使得之前弱学习器1学习误差率高的训练样本点的权重变高,使得这些误差率高的点在后面的弱学习器2中得到更多的重视。

2)然后基于调整权重后的训练集来训练弱学习器2。

3)重复进行,直到弱学习器数达到事先指定的数目T,最终将这T个弱学习器通过集合策略进行整合,得到最终的强学习器。

  代表算法:AdaBoost算法和提升树(boosting tree)系列算法。

集成学习-bagging

Bagging的算法原理

bagging算法的工作机制

  1)通过随机采样得到个体弱学习器的训练集;

  2)T次的随机采样,得到T个采样集;对于这T个采样集,分别独立的训练出T个弱学习器;

  3)再对这T个弱学习器通过集合策略来得到最终的强学习器。

知识扩展:

自助采样法(Bootstrap sampling):对于m个样本的原始训练集,每次先随机采集一个样本放入采样集,接着把该样本放回,也就是说下次采样时该样本仍有可能被采集到,这样采集m次,最终可以得到m个样本的采样集,由于是随机采样,这样每次的采样集是和原始训练集不同的,和其他采样集也是不同的,这样得到多个不同的弱学习器。

        随机森林是bagging的一个特化进阶版。特化:是因为随机森林的弱学习器都是决策树;进阶:随机森林在bagging的样本随机采样基础上,又加上了特征的随机选择;其基本思想没有脱离bagging的范畴。

集成学习-结合策略

  假定通过训练数据,得到的T个弱学习器是{h1,h2,...hT}。

平均法

  对于数值类的回归预测问题,通常使用的结合策略是平均法,也就是说,对于若干个弱学习器的输出进行平均得到最终的预测输出。

最简单的是算术平均,最终预测:

                                                                           

若每个个体学习器有一个权重w,则最终预测:

                                                                           

其中wi是个体学习器hi的权重:

                                                                           

优缺点:相对比较简单,但学习误差可能较大。

投票法

  对于分类问题的预测,通常使用的是投票法。假设我们的预测类别是{c1,c2,...cK},对于任意一个预测样本x,T个弱学习器的预测结果分别是(h1(x),h2(x)...hT(x))。

       最简单的投票法是相对多数投票法,稍微复杂的投票法是绝对多数投票法,更加复杂的是加权投票法。

  相对多数投票法(少数服从多数):T个弱学习器的对样本x的预测结果中,数量最多的类别ci为最终的分类类别。如果不止一个类别获得最高票,则随机选择一个做最终类别。

  绝对多数投票法(票过半数):在相对多数投票法的基础上,不光要求获得最高票,还要求票过半数。否则会拒绝预测。

  加权投票法:每个弱学习器的分类票数要乘以一个权重,最终将各个类别的加权票数求和,最大的值对应的类别为最终类别(和加权平均法一样)。

优缺点:相对比较简单,但学习误差可能较大。

学习法

  stacking是学习法的代表方法。在stacking的结合策略时, 不是对弱学习器的结果做简单的逻辑处理,而是再加上一层学习器。即:将训练集弱学习器的学习结果作为输入,重新训练一个学习器来得到最终结果。

  在这种情况下,弱学习器称为初级学习器,将用于结合的学习器称为次级学习器。对于测试集,首先用初级学习器预测一次,得到次级学习器的输入样本,再用次级学习器预测一次,得到最终的预测结果。

参考文献:https://www.cnblogs.com/pinard/p/6131423.html 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
集成学习是一种将不同的分类或回归模型组合起来,得到更好性能的机器学习方法。通过集成学习,可以利用多个模型的优势,弥补单独使用单一模型的不足。Matlab是一种常用的科学计算和数据分析软件,提供了丰富的机器学习和数据挖掘工具,可以方便地进行集成学习。 在Matlab中,可以使用集成学习的工具包进行集成学习模型的构建和训练。常见的集成学习方法包括Bagging、Boosting和随机森林等。Bagging通过随机有放回地从原始数据集中抽取样本来构建多个独立的模型,并将它们的结果进行平均或投票来进行最终的预测。Boosting则是通过基于权重的迭代训练来构建一系列的弱学习器,并将它们组合成一个强学习器。随机森林是一种基于决策树的集成学习方法,通过构建多个决策树并进行投票来进行预测。 使用Matlab进行集成学习,首先需要准备好训练数据,并将其划分为训练集和测试集。然后可以选择合适的集成学习方法,设置相关参数,并进行模型的训练。训练完成后,可以使用测试集进行模型性能的评估。同时,Matlab还提供了可视化工具,可以方便地对集成学习模型进行可视化分析,了解各个模型的贡献和预测结果。 在集成学习中,模型的选择和融合是非常重要的环节。Matlab提供了丰富的机器学习算法和工具,可以方便地进行模型比较和融合。同时,Matlab还支持并行计算和GPU加速,可以加快集成学习模型的训练和预测速度。 总之,Matlab提供了强大的集成学习工具和功能,可以方便地进行集成学习模型的构建、训练和评估。通过使用Matlab进行集成学习,可以有效地提升机器学习模型的性能,并在实际应用中取得更好的结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值