c++ 解方程组_MIT—微分方程笔记30 常系数解耦线性方程组

60947bfa4eba7776efe70c83b6ba1dfd.png

第30讲 常系数解耦线性方程组

Decoupling Linear Systems with Constant Coefficients

网易公开课​open.163.com
32b78db55cc0df477f6f177f571e6973.png

齐次方程组

equation?tex=%5C%5B%5Cbold+x%27+%3D+%5Cboldsymbol+A%5Cbold+x%5C%5D 。目前介绍了两种求解方法:其一,解特征方程,求特征值特征向量;其二,计算矩阵型指数
equation?tex=%5C%5B%7Be%5E%7B%5Cboldsymbol+At%7D%7D%5C%5D,用基本矩阵计算即
equation?tex=%5C%5B%7Be%5E%7B%5Cboldsymbol+At%7D%7D%3D%5Cboldsymbol+X%28t%29+%5Ccdot+%5Cboldsymbol+X%7B%280%29%5E%7B+-+1%7D%7D+%5C%5D 。今天将会介绍另一种计算方法,依然并不省力,相当于换一种语言来描述而已。但是不同的领域有不同的习惯,有的喜欢用基本矩阵,而有的就用今天介绍的解耦的方式来表达问题和答案。

解耦

所谓耦合,就是方程中导函数的表达式中同时出现了xy,而解耦的方法,就是做一些线性替换

equation?tex=%5C%5B%5Cleft%5C%7B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7Bu+%3D+ax+%2B+by%7D%5C%5C+%7Bv+%3D+cx+%2B+dy%7D+%5Cend%7Barray%7D%7D+%5Cright.%5C%5D 来实现对原方程组的解耦,得到已解耦的方程组
equation?tex=%5C%5B%5Cleft%5C%7B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7Bu%27+%3D+%7Bk_1%7Du%7D%5C%5C+%7Bv%27+%3D+%7Bk_2%7Dv%7D+%5Cend%7Barray%7D%7D+%5Cright.%5C%5D ,而对于这种方程已经可以分别求解了。

解耦方法的流行还在于,新的因变量在物理上可能有特殊的解释,有某些特殊的原因导致了它以这种状态存在。

:底部有洞联通的两个容器盒,容器1的底面积是容器2的一半,容器1的液面高度为x,2的高度为y。联通洞的液体流速正比于洞的面积乘以液面高度差(高度差正比于压力差)。

f64835f1681d5726e8defc43647bb3ae.png

列出微分方程

equation?tex=%5C%5B%5Cleft%5C%7B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7Bx%27+%3D+c%28y+-+x%29%7D%5C%5C+%7B2y%27+%3D+c%28x+-+y%29%7D+%5Cend%7Barray%7D%7D+%5Cright.%5C%5D
y的导函数前面有参数2,这是因为同等流量对于容器2液面高度的影响受到其底面积的影响。为了简便运算,令参数 c等于2。因此方程为
equation?tex=%5C%5B%5Cleft%5C%7B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7Bx%27+%3D++-+2x+%2B+2y%7D%5C%5C+%7By%27+%3D+x+-+y%7D+%5Cend%7Barray%7D%7D+%5Cright.%5C%5D

稍后会给出确定线性替换的普适方法,但是这里我们从物理问题本身入手去探讨如何进行代换,首先,高度差是直接反应压力差的参数,它比两个容器各自的高度更加利于讨论该问题,其次,容器内部的总液体量是不变的,由此可知可以进行如下线性替换

equation?tex=%5C%5B%5Cleft%5C%7B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7Bu+%3D+x+%2B+2y%7D%5C%5C+%7Bv+%3D+x+-+y%7D+%5Cend%7Barray%7D%7D+%5Cright.%5C%5D ,得到方程组
equation?tex=%5C%5B%5Cleft%5C%7B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7Bu%27+%3D+0%7D%5C%5C+%7Bv%27+%3D++-+3v%7D+%5Cend%7Barray%7D%7D+%5Cright.%5C%5D

解得

equation?tex=%5C%5B%5Cleft%5C%7B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bl%7D%7D+%7Bu+%3D+%7Bc_1%7D%7D%5C%5C+%7Bv+%3D+%7Bc_2%7D%7Be%5E%7B+-+3t%7D%7D%7D+%5Cend%7Barray%7D%7D+%5Cright.%5C%5D ,得到
equation?tex=%5C%5B%5Cleft%5C%7B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bl%7D%7D+%7Bx+%3D+%5Cfrac%7B1%7D%7B3%7D%28u+%2B+2v%29+%3D+%5Cfrac%7B1%7D%7B3%7D%28%7Bc_1%7D+%2B+2%7Bc_2%7D%7Be%5E%7B+-+3t%7D%7D%29%7D%5C%5C+%7By+%3D+%5Cfrac%7B1%7D%7B3%7D%28u+-+v%29+%3D+%5Cfrac%7B1%7D%7B3%7D%28%7Bc_1%7D+-+%7Bc_2%7D%7Be%5E%7B+-+3t%7D%7D%29%7D+%5Cend%7Barray%7D%7D+%5Cright.%5C%5D ,即
equation?tex=%5C%5B%5Cbold+x+%3D+%5Cfrac%7B%7B%7Bc_1%7D%7D%7D%7B3%7D%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+1%5C%5C+1+%5Cend%7Barray%7D%7D+%5Cright%5D+%2B+%5Cfrac%7B%7B%7Bc_2%7D%7D%7D%7B3%7D%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+2%5C%5C+%7B+-+1%7D+%5Cend%7Barray%7D%7D+%5Cright%5D%7Be%5E%7B+-+3t%7D%7D%5C%5D

解耦的一般性方法

解耦要求特征值都是实数且都是完备特征值。

新变量为

equation?tex=%5C%5B%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+u%5C%5C+v+%5Cend%7Barray%7D%7D+%5Cright%5D+%3D+%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7B%7Ba_1%7D%7D%26%7B%7Ba_2%7D%7D%5C%5C+%7B%7Bb_1%7D%7D%26%7B%7Bb_2%7D%7D+%5Cend%7Barray%7D%7D+%5Cright%5D%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+x%5C%5C+y+%5Cend%7Barray%7D%7D+%5Cright%5D+%3D+%5Cboldsymbol+D%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+x%5C%5C+y+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D 。写出反代换公式
equation?tex=%5C%5B%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+x%5C%5C+y+%5Cend%7Barray%7D%7D+%5Cright%5D+%3D+%7B%5Cboldsymbol+D%5E%7B+-+1%7D%7D%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+u%5C%5C+v+%5Cend%7Barray%7D%7D+%5Cright%5D+%3D%5Cboldsymbol+E%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+u%5C%5C+v+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D 。则
E的列向量是矩阵 A两个特征向量
equation?tex=%5C%5B%5Cboldsymbol+E+%3D+%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7B%7B%5Cboldsymbol+%5Calpha+_1%7D%7D%26%7B%7B%5Cboldsymbol+%5Calpha+_2%7D%7D+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D 。乘以
E进行坐标变换,实际上就是将原空间变换至 uv空间,而 uv空间中两个坐标方向对于矩阵 A的操作具有方向不变性,回想原坐标系下,只有特征向量方向才具有这种特性,因此实际上特征向量 α1, α2, 分别对应着 uv空间的坐标方向,即 α1 对应
equation?tex=%5C%5B%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+1%5C%5C+0+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D
α2 对应
equation?tex=%5C%5B%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+0%5C%5C+1+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D 。可以代入
equation?tex=%5C%5B%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+u%5C%5C+v+%5Cend%7Barray%7D%7D+%5Cright%5D+%3D+%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+1%5C%5C+0+%5Cend%7Barray%7D%7D+%5Cright%5D%2C%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+0%5C%5C+1+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D 加以验证,对应的
equation?tex=%5C%5B%5Cboldsymbol+E%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+1%5C%5C+0+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D
equation?tex=%5C%5B%5Cboldsymbol+E%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+0%5C%5C+1+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D 即为矩阵
E 的两个列向量,它们分别就是 α1, α2。

equation?tex=%5C%5B%28%5Cboldsymbol+A+-+%5Clambda+%5Cboldsymbol++I%29%5Cboldsymbol+%5Calpha++%3D%5Cboldsymbol++0+%5CLeftrightarrow+%5Cboldsymbol+A%5Cboldsymbol+%5Calpha++%3D+%5Clambda+%5Cboldsymbol++%5Calpha+%5C%5D 。公式给出了特征值和特征向量的两种定义方式,前一种首先定义特征值 是使得行列式
equation?tex=%5C%5B%5Cleft%7C+%7B%5Cboldsymbol+A+-+%5Clambda+%5Cboldsymbol+I%7D+%5Cright%7C%5C%5D 为0的值,而特征向量
α 则是方程组的非 0解;后一种定义更有几何味道,把 A看作是对平面做了一个线性变换,而对某个特定的向量 α,线性变换只是对它做了拉伸或者压缩,而特征值
equation?tex=%CE%BB 就是拉伸或者压缩比例。
因为不是从线代角度出发来全面论证这件事情,因此教授没有顺向去描述,没有一些线代的相关知识做背景,就难于把事情讲得特别通透,而Gilbert Strang的“微分方程和线性代数”在这方面比较有优势。

微分方程组

equation?tex=%5C%5B%5Cbold+x%27+%3D+%5Cboldsymbol+A%5Cbold+x%5C%5D,做变量代换
equation?tex=%5C%5B%5Cbold+x+%3D%5Cboldsymbol++E%5Cbold+u%2C%5Cbold+u+%3D+%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+u%5C%5C+v+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D ,则方程为
equation?tex=%5C%5B%5Cboldsymbol+E%5Cbold+u%27+%3D%5Cboldsymbol++A%5Cboldsymbol+E%5Cbold+u%5C%5D ,其中
equation?tex=%5C%5B%5Cboldsymbol+%7BAE%7D+%3D%5Cboldsymbol+A%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7B%7B%5Cboldsymbol+%5Calpha+_1%7D%7D%26%7B%7B%5Cboldsymbol+%5Calpha+_2%7D%7D+%5Cend%7Barray%7D%7D+%5Cright%5D+%3D+%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7B%5Cboldsymbol+A%7B%5Cboldsymbol+%5Calpha+_1%7D%7D%26%7B%5Cboldsymbol+A%7B%5Cboldsymbol+%5Calpha+_2%7D%7D+%5Cend%7Barray%7D%7D+%5Cright%5D+%3D+%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7B%7B%5Clambda+_1%7D%7B%5Cboldsymbol+%5Calpha+_1%7D%7D%26%7B%7B%5Clambda+_2%7D%7B%5Cboldsymbol+%5Calpha+_2%7D%7D+%5Cend%7Barray%7D%7D+%5Cright%5D+%3D+%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7B%7B%5Cboldsymbol+%5Calpha+_1%7D%7D%26%7B%7B%5Cboldsymbol+%5Calpha+_2%7D%7D+%5Cend%7Barray%7D%7D+%5Cright%5D%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7B%7B%5Clambda+_1%7D%7D%26%7B%7D%5C%5C+%7B%7D%26%7B%7B%5Clambda+_2%7D%7D+%5Cend%7Barray%7D%7D+%5Cright%5D+%3D%5Cboldsymbol+E%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7B%7B%5Clambda+_1%7D%7D%26%7B%7D%5C%5C+%7B%7D%26%7B%7B%5Clambda+_2%7D%7D+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D ,因此有
equation?tex=%5C%5B%5Cboldsymbol+E%5Cbold+u%27+%3D%5Cboldsymbol+%7BAE%7D%5Cbold+u+%3D%5Cboldsymbol+E%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7B%7B%5Clambda+_1%7D%7D%26%7B%7D%5C%5C+%7B%7D%26%7B%7B%5Clambda+_2%7D%7D+%5Cend%7Barray%7D%7D+%5Cright%5D%5Cbold+u%5C%5D ,得到
equation?tex=%5C%5B%5Cbold+u%27+%3D+%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7B%7B%5Clambda+_1%7D%7D%26%7B%7D%5C%5C+%7B%7D%26%7B%7B%5Clambda+_2%7D%7D+%5Cend%7Barray%7D%7D+%5Cright%5D%5Cbold+u%5C%5D ,即
equation?tex=%5C%5B%5Cleft%5C%7B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7Bu%27+%3D+%7B%5Clambda+_1%7Du%7D%5C%5C+%7Bv%27+%3D+%7B%5Clambda+_2%7Dv%7D+%5Cend%7Barray%7D%7D+%5Cright.%5C%5D

通过选择特征向量作为新的基向量,方程组实现了解耦,常数就是特征值。得到的解为

equation?tex=%5C%5B%5Cleft%5C%7B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bl%7D%7D+%7Bu+%3D+%7Bc_1%7D%7Be%5E%7B%7B%5Clambda+_1%7Dt%7D%7D%7D%5C%5C+%7Bv+%3D+%7Bc_2%7D%7Be%5E%7B%7B%5Clambda+_2%7Dt%7D%7D%7D+%5Cend%7Barray%7D%7D+%5Cright.%5C%5D

用上面介绍的普适方法解耦方程组

equation?tex=%5C%5B%7B%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+x%5C%5C+y+%5Cend%7Barray%7D%7D+%5Cright%5D%5E%5Cprime+%7D+%3D+%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7B+-+2%7D%262%5C%5C+1%26%7B+-+1%7D+%5Cend%7Barray%7D%7D+%5Cright%5D%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+x%5C%5C+y+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D

首先得到特征方程为

equation?tex=%5C%5B%7B%5Clambda+%5E2%7D+%2B+3%5Clambda++%3D+0%5C%5D ,求得特征值
equation?tex=%5C%5B%7B%5Clambda+_1%7D+%3D+0%2C%7B%5Clambda+_2%7D+%3D++-+3%5C%5D ,对应的特征向量为
equation?tex=%5C%5B%7B%5Cboldsymbol+%5Calpha+_1%7D+%3D+%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+1%5C%5C+1+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D
equation?tex=%5C%5B%7B%5Cboldsymbol+%5Calpha+_2%7D+%3D+%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+-2%5C%5C+1+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D 。因此
equation?tex=%5C%5B%5Cboldsymbol+E+%3D+%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+1%26%7B+-+2%7D%5C%5C+1%261+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D
equation?tex=%5C%5B%7B%5Cboldsymbol+E%5E%7B+-+1%7D%7D+%3D+%5Cfrac%7B1%7D%7B3%7D%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+1%262%5C%5C+%7B+-+1%7D%261+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D

所以有

equation?tex=%5C%5B%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+u%5C%5C+v+%5Cend%7Barray%7D%7D+%5Cright%5D+%3D+%5Cfrac%7B1%7D%7B3%7D%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+1%262%5C%5C+%7B+-+1%7D%261+%5Cend%7Barray%7D%7D+%5Cright%5D%5Cleft%5B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+x%5C%5C+y+%5Cend%7Barray%7D%7D+%5Cright%5D%5C%5D ,即
equation?tex=%5C%5B%5Cleft%5C%7B+%7B%5Cbegin%7Barray%7D%7B%2A%7B20%7D%7Bc%7D%7D+%7Bu+%3D+%5Cfrac%7B1%7D%7B3%7D%28x+%2B+2y%29%7D%5C%5C+%7Bv+%3D+%5Cfrac%7B1%7D%7B3%7D%28x+-+y%29%7D+%5Cend%7Barray%7D%7D+%5Cright.%5C%5D ,和我们之前通过物理状态讨论的结果只差一个常数项。
在有些复杂问题中,通过这种方法找到的代换关系和新的因变量,从物理方面等于给出了新的性质或者状态的内在联系,有时候这种启发和求解方程同样重要。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值