线性代数笔记9:特征值在微分方程中的应用

本文探讨了线性代数中的特征值在微分方程中的应用,特别是如何影响差分方程的长期行为和稳定性。当矩阵可对角化时,通过特征值和特征向量可以解析求解微分方程。稳定性分析表明,特征值的正负决定了系统的稳定状态:所有特征值为负时系统稳定,存在正特征值时系统不稳定。
摘要由CSDN通过智能技术生成

本节将矩阵的特征值与微分方程联系在一起,从另一个角度更好地了解特征值。

在差分方程中的应用

首先回顾由差分方程 uk+1=Auk u k + 1 = A u k 描述的离散动力系统的长期行为,即 k k ⇒ ∞ 时解的性质。

A A 可对角化,即存在可逆矩阵 S = ( x 1 , . . . , x n ) ,使得 S1AS=Λ S − 1 A S = Λ 为对角阵。

S1u0=(c1,...,cn)T S − 1 u 0 = ( c 1 , . . . , c n ) T ,即 u0=c1x1+...+cnxn u 0 = c 1 x 1 + . . . + c n x n

uk=Aku0=SΛkS1u0=c1λk1x1+...+cnλknxn u k = A k u 0 = S Λ k S − 1 u 0 = c 1 λ 1 k x 1 + . . . + c n λ n k x n

可以看出, uk u k 的增长因子 λki λ i k 支配,因此系统的稳定性依赖于 A A 的特征值。

当所有特征值 | λ i | < 1 时,是稳定的;

当所有特征值 |λi|1 | λ i | ≤ 1 时,是中性稳定的;

当至少有一个特征值 |λi|>1 | λ i | > 1 时,是不稳定的;

因此,Markov过程是中性稳定的,Fibonacci数列是不稳定的。

引言

设关于t的向量值可导函数 u=u(t)=u1(t)....un(t) u = u ( t ) = ( u 1 ( t ) . . . . u n ( t ) ) ,满足:

dudx=Au d u d x = A u

其中 A=(aij) A = ( a i j ) n n 阶常数矩阵,求解 u = u ( t )

  • A=
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值