本节将矩阵的特征值与微分方程联系在一起,从另一个角度更好地了解特征值。
在差分方程中的应用
首先回顾由差分方程 uk+1=Auk u k + 1 = A u k 描述的离散动力系统的长期行为,即 k⇒∞ k ⇒ ∞ 时解的性质。
设 A A 可对角化,即存在可逆矩阵 ,使得 S−1AS=Λ S − 1 A S = Λ 为对角阵。
设 S−1u0=(c1,...,cn)T S − 1 u 0 = ( c 1 , . . . , c n ) T ,即 u0=c1x1+...+cnxn u 0 = c 1 x 1 + . . . + c n x n 。
uk=Aku0=SΛkS−1u0=c1λk1x1+...+cnλknxn u k = A k u 0 = S Λ k S − 1 u 0 = c 1 λ 1 k x 1 + . . . + c n λ n k x n
可以看出, uk u k 的增长因子 λki λ i k 支配,因此系统的稳定性依赖于 A A 的特征值。
当所有特征值 时,是稳定的;
当所有特征值 |λi|≤1 | λ i | ≤ 1 时,是中性稳定的;
当至少有一个特征值 |λi|>1 | λ i | > 1 时,是不稳定的;
因此,Markov过程是中性稳定的,Fibonacci数列是不稳定的。
引言
设关于t的向量值可导函数 u=u(t)=⎛⎝⎜u1(t)....un(t)⎞⎠⎟ u = u ( t ) = ( u 1 ( t ) . . . . u n ( t ) ) ,满足:
dudx=Au d u d x = A u其中 A=(aij) A = ( a i j ) 为 n n 阶常数矩阵,求解
- 若 A=⎛⎝⎜