【神经网络】【TensorFlow】求解耦合常微分方程组

这篇博客探讨了如何使用神经网络,特别是TensorFlow,来求解耦合常微分方程组。作者根据arxiv.org上的一篇论文,设计了一个包含10个神经元的单隐层网络,并通过逐步增加训练样本范围来解决数值不稳定性问题。在多次迭代训练后,神经网络的拟合结果逐渐接近解析解。文章还讨论了网络结构、损失函数设计以及可能的优化策略。
摘要由CSDN通过智能技术生成

刚开始学习神经网络,之前在帖子中学习了arxiv.org中一篇论文通过神经网络求解常微分方程的思路,原帖介绍了论文思路并给出了常微分方程求解举例,在这里我写一下自己的一些理解,并尝试复现原论文中的耦合常微分方程组求解、产生的问题以及解决方法。

原帖和原论文链接如下:

Tensorflow一个很简单的神经网络求解常微分及偏微分方程_Trytobenice的博客-CSDN博客https://blog.csdn.net/qq_39817721/article/details/88875099NNforDEsPT (arxiv.org)https://arxiv.org/pdf/1902.05563.pdf首先,关于原论文中第3页的一阶常微分方程,原帖已经讲的很详细了,通过设计包含10个神经元的单隐层神经网络,将损失函数设定为常微分方程的平方,在x\in [0,3]范围内,利用Adam优化器实现了拟合误差不超过0.01。此外,根据评论,有同学指出,如果将原帖代码中tf.zeros()全部换成tf.random_normal(),可以进一步提升loss下降速度和最终精度,并可以加入偏置项。整个神经网络的构成大概是下图所示:

 基于以上思路,考虑下面的耦合常微分方程组:

 \begin{aligned} &\frac{\mathrm{d\phi_{1}} }{\mathrm{d} x}-\cos x-\phi_{1}^{2}-\phi_2+1+x^2+\sin^{2} x=0\\ &\frac{\mathrm{d\phi_{2}} }{\mathrm{d} x}-2x+(1+x^2)\sin x-\phi_1\phi_2=0\\ &\phi_1(0)=0,~\phi_2(0)=1 \end{aligned}

论文的求解思路是,仍通过前面所设计的单隐层神经网络求解,隐层仍然是10个神经元,由于待解决的是2个常微分方程,这里输出层自然变为2个神经元,整个神经网络的构成就变成了下图所示:

但根据论文所述,给出的边界条件在区域的同一端,即x=0处,这有可能导致神经网络求解存在数值不稳定,其与损失超平面(loss hypersurface)相关,导致神经网络可能收敛到局部极小。为了解决此问题,论文中提出的方法是将训练样本点进

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值