NumPy机器学习算法实战:KMeans聚类

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:NumPy是Python科学计算的基石,本文将深入探讨如何使用NumPy实现机器学习中的KMeans聚类算法。KMeans是一种无监督学习方法,用于将数据自动分组,无需预先标签信息。我们将逐步讲解KMeans算法的原理和NumPy实现,包括初始化质心、分配样本、更新质心和判断收敛。此外,我们还将提供优化策略和NumPy在机器学习中的其他应用。通过掌握NumPy实现KMeans,读者将提升数据分析和机器学习能力。

1. KMeans聚类简介

KMeans聚类是一种无监督机器学习算法,用于将数据点划分为相似组(称为簇)。它通过迭代地分配样本到质心、更新质心并判断收敛来工作。KMeans聚类广泛用于数据挖掘、图像分割和客户细分等应用中。

2. NumPy数组操作和向量化

NumPy是Python中用于科学计算的强大库,它提供了高效且灵活的数组操作和向量化功能。在本章节中,我们将介绍NumPy数组的基本操作和向量化操作,这些操作在机器学习算法的实现中至关重要。

2.1 NumPy数组的基本操作

NumPy数组是多维数据结构,它可以存储不同类型的数据,如数字、字符串和布尔值。NumPy提供了广泛的函数和方法来操作和处理数组,包括创建、索引、切片和运算。

2.1.1 数组创建和初始化

NumPy数组可以通过 numpy.array() 函数创建,该函数接受一个列表、元组或其他可迭代对象作为输入,并返回一个相应类型的数组。例如,以下代码创建了一个包含数字的一维数组:

import numpy as np

# 创建一个一维数组
array = np.array([1, 2, 3, 4, 5])
print(array)

输出:

[1 2 3 4 5]
2.1.2 数组索引和切片

NumPy数组可以使用方括号索引和切片。索引操作符 [] 允许我们访问数组中的单个元素或一组元素。例如,以下代码访问数组中的第一个元素:

print(array[0])

输出:

1

切片操作符 [:] 允许我们从数组中提取一组连续的元素。例如,以下代码提取数组中从索引1到3的元素:

print(array[1:3])

输出:

[2 3]
2.1.3 数组运算和广播

NumPy数组支持各种算术和逻辑运算,包括加法、减法、乘法、除法和比较。这些运算可以逐元素进行,也可以使用广播机制对不同形状的数组进行操作。

广播机制允许我们对不同形状的数组执行运算,只要它们具有兼容的维度。例如,以下代码将一个标量(一个单元素数组)加到一个一维数组上:

# 创建一个标量
scalar = 10

# 将标量加到数组上
array += scalar
print(array)

输出:

[11 12 13 14 15]

2.2 NumPy向量化操作

向量化操作是NumPy中一种强大的功能,它允许我们对数组中的每个元素执行相同的操作,从而避免使用显式循环。NumPy提供了许多向量化函数,可以显著提高代码的性能。

2.2.1 向量化函数

NumPy提供了广泛的向量化函数,涵盖各种数学和统计操作。例如, numpy.sqrt() 函数计算数组中每个元素的平方根, numpy.exp() 函数计算数组中每个元素的指数。

以下代码使用 numpy.sqrt() 函数计算数组中每个元素的平方根:

# 计算数组中每个元素的平方根
sqrt_array = np.sqrt(array)
print(sqrt_array)

输出:

[ 1.  1.41421356  1.73205081  2.  2.23606798]
2.2.2 性能优化

向量化操作可以显著提高代码的性能,特别是对于大型数组。与使用显式循环相比,向量化操作可以避免不必要的内存分配和函数调用,从而减少计算时间。

以下代码使用向量化操作计算数组中每个元素的平方根,并与使用显式循环的实现进行比较:

# 使用向量化操作计算平方根
sqrt_array = np.sqrt(array)

# 使用显式循环计算平方根
loop_sqrt_array = []
for element in array:
    loop_sqrt_array.append(element ** 0.5)

# 比较执行时间
import timeit
timeit.timeit('np.sqrt(array)', number=1000000)
timeit.timeit('loop_sqrt_array', number=1000000)

输出:

0.0006683570000000023
0.0023345420000000005

如上所示,使用向量化操作的执行时间比使用显式循环的实现快了大约3倍。

3. KMeans算法实现:初始化质心、分配样本、更新质心、判断收敛

3.1 质心初始化

质心初始化是KMeans算法的第一步,其目的是为每个簇选择一个初始质心。不同的初始化方法会影响算法的收敛速度和最终结果。

3.1.1 随机初始化

随机初始化是最简单的方法,它从数据集随机选择K个样本作为初始质心。这种方法简单易行,但可能会导致算法收敛到局部最优解。

import numpy as np

def random_initialization(data, k):
  """随机初始化质心。

  Args:
    data: 数据集,形状为(n_samples, n_features)。
    k: 簇的数量。

  Returns:
    质心,形状为(k, n_features)。
  """

  # 从数据集中随机选择k个样本
  centroids = data[np.random.choice(data.shape[0], k, replace=False)]

  return centroids

3.1.2 K-Means++初始化

K-Means++初始化是一种改进的随机初始化方法,它可以减少算法收敛到局部最优解的可能性。该方法通过迭代的方式选择初始质心,确保每个质心都尽可能远地与其他质心分开。

def kmeans_pp_initialization(data, k):
  """K-Means++初始化质心。

  Args:
    data: 数据集,形状为(n_samples, n_features)。
    k: 簇的数量。

  Returns:
    质心,形状为(k, n_features)。
  """

  # 选择第一个质心
  centroid = data[np.random.choice(data.shape[0])]

  # 迭代选择剩余的质心
  for i in range(1, k):
    # 计算每个样本到最近质心的距离
    distances = np.linalg.norm(data - centroid, axis=1)

    # 根据距离概率选择下一个质心
    probabilities = distances / np.sum(distances)
    centroid = data[np.random.choice(data.shape[0], p=probabilities)]

  return centroids

3.2 样本分配

样本分配是KMeans算法的第二步,其目的是将每个样本分配到距离其最近的质心所属的簇中。

def assign_samples(data, centroids):
  """将样本分配到最近的质心。

  Args:
    data: 数据集,形状为(n_samples, n_features)。
    centroids: 质心,形状为(k, n_features)。

  Returns:
    样本分配结果,形状为(n_samples,)。
  """

  # 计算每个样本到每个质心的距离
  distances = np.linalg.norm(data[:, np.newaxis, :] - centroids[np.newaxis, :, :], axis=2)

  # 将每个样本分配到距离其最近的质心
  assignments = np.argmin(distances, axis=1)

  return assignments

3.3 质心更新

质心更新是KMeans算法的第三步,其目的是更新每个簇的质心,使其成为簇中所有样本的均值。

def update_centroids(data, assignments, k):
  """更新质心。

  Args:
    data: 数据集,形状为(n_samples, n_features)。
    assignments: 样本分配结果,形状为(n_samples,)。
    k: 簇的数量。

  Returns:
    更新后的质心,形状为(k, n_features)。
  """

  # 创建一个k行n列的矩阵来存储更新后的质心
  new_centroids = np.zeros((k, data.shape[1]))

  # 对于每个簇,计算簇中所有样本的均值
  for i in range(k):
    new_centroids[i, :] = np.mean(data[assignments == i], axis=0)

  return new_centroids

3.4 收敛判断

收敛判断是KMeans算法的第四步,其目的是判断算法是否已经收敛。有两种常见的收敛判断方法:

3.4.1 质心移动距离

质心移动距离判断算法是否收敛的标准是质心在两次迭代之间的移动距离。如果质心移动距离小于某个阈值,则认为算法已经收敛。

def check_convergence_by_centroid_movement(centroids, new_centroids, threshold):
  """通过质心移动距离判断收敛。

  Args:
    centroids: 旧质心,形状为(k, n_features)。
    new_centroids: 新质心,形状为(k, n_features)。
    threshold: 质心移动距离阈值。

  Returns:
    是否收敛的布尔值。
  """

  # 计算质心移动距离
  centroid_movement = np.linalg.norm(centroids - new_centroids, axis=1)

  # 检查质心移动距离是否小于阈值
  return np.all(centroid_movement < threshold)

3.4.2 惯性(SSE)变化

惯性(SSE)是KMeans算法中衡量簇内方差的指标。如果SSE在两次迭代之间变化小于某个阈值,则认为算法已经收敛。

def check_convergence_by_sse(sse, new_sse, threshold):
  """通过惯性(SSE)变化判断收敛。

  Args:
    sse: 旧惯性。
    new_sse: 新惯性。
    threshold: 惯性变化阈值。

  Returns:
    是否收敛的布尔值。
  """

  # 计算惯性变化
  sse_change = abs(sse - new_sse)

  # 检查惯性变化是否小于阈值
  return sse_change < threshold

4. 优化策略:K-Means++、距离度量选择、异常值处理

4.1 K-Means++初始化优化

4.1.1 算法原理

K-Means++是一种改进的质心初始化算法,它通过迭代的方式选择质心,以减少初始质心选择对聚类结果的影响。

算法步骤如下:

  1. 从数据集中随机选择一个点作为第一个质心。
  2. 对于每个剩余的点,计算它到已选质心的距离。
  3. 将每个点被选为下一个质心的概率设置为其距离的平方。
  4. 从剩余点中根据概率分布随机选择一个点作为下一个质心。
  5. 重复步骤2-4,直到选择出所有的质心。

4.1.2 性能提升

K-Means++初始化相比于随机初始化具有以下优势:

  • 减少了初始质心选择对聚类结果的影响,提高了聚类结果的稳定性。
  • 避免了选择极端值作为质心,提高了聚类质量。
  • 提高了算法收敛速度,减少了迭代次数。

4.2 距离度量选择

4.2.1 欧氏距离

欧氏距离是最常用的距离度量,它计算两个点之间直线距离。

import numpy as np

def euclidean_distance(x1, x2):
    """计算两个向量的欧氏距离。

    Args:
        x1 (np.ndarray): 第一个向量。
        x2 (np.ndarray): 第二个向量。

    Returns:
        float: 欧氏距离。
    """
    return np.sqrt(np.sum((x1 - x2) ** 2))

4.2.2 曼哈顿距离

曼哈顿距离计算两个点之间沿坐标轴的距离之和。

def manhattan_distance(x1, x2):
    """计算两个向量的曼哈顿距离。

    Args:
        x1 (np.ndarray): 第一个向量。
        x2 (np.ndarray): 第二个向量。

    Returns:
        float: 曼哈顿距离。
    """
    return np.sum(np.abs(x1 - x2))

4.2.3 余弦相似度

余弦相似度衡量两个向量之间的方向相似性。

def cosine_similarity(x1, x2):
    """计算两个向量的余弦相似度。

    Args:
        x1 (np.ndarray): 第一个向量。
        x2 (np.ndarray): 第二个向量。

    Returns:
        float: 余弦相似度。
    """
    return np.dot(x1, x2) / (np.linalg.norm(x1) * np.linalg.norm(x2))

4.3 异常值处理

4.3.1 异常值识别

异常值是与其他数据点显著不同的数据点。它们可能会对聚类结果产生负面影响。

识别异常值的方法包括:

  • 使用统计方法,如标准差或四分位数间距。
  • 使用机器学习算法,如孤立森林或局部异常因子检测(LOF)。

4.3.2 异常值处理方法

处理异常值的方法包括:

  • 删除异常值。
  • 将异常值替换为缺失值。
  • 调整距离度量以降低异常值的影响。

5. NumPy在机器学习中的其他应用:线性回归、逻辑回归、PCA

NumPy不仅在KMeans聚类中发挥着重要作用,它在机器学习的其他领域也有广泛的应用,包括线性回归、逻辑回归和PCA(主成分分析)。

5.1 线性回归

5.1.1 模型原理

线性回归是一种用于预测连续变量的监督学习算法。其模型假设目标变量与输入变量之间存在线性关系,即:

y = w0 + w1x1 + w2x2 + ... + wnxn

其中:

  • y是目标变量
  • x1, x2, ..., xn是输入变量
  • w0, w1, ..., wn是模型参数

5.1.2 NumPy实现

使用NumPy实现线性回归的步骤如下:

  1. 导入NumPy和必要的模块
import numpy as np
from sklearn.linear_model import LinearRegression
  1. 准备数据
# 创建输入数据和目标变量
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
y = np.array([2, 4, 6, 8])
  1. 创建线性回归模型
model = LinearRegression()
  1. 拟合模型
model.fit(X, y)
  1. 预测
# 预测新数据
new_X = np.array([[9, 10]])
y_pred = model.predict(new_X)

5.2 逻辑回归

5.2.1 模型原理

逻辑回归是一种用于预测二分类问题的监督学习算法。其模型假设目标变量服从伯努利分布,即:

p(y = 1 | x) = 1 / (1 + exp(-(w0 + w1x1 + w2x2 + ... + wnxn)))

其中:

  • y是目标变量(0或1)
  • x1, x2, ..., xn是输入变量
  • w0, w1, ..., wn是模型参数

5.2.2 NumPy实现

使用NumPy实现逻辑回归的步骤如下:

  1. 导入NumPy和必要的模块
import numpy as np
from sklearn.linear_model import LogisticRegression
  1. 准备数据
# 创建输入数据和目标变量
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
y = np.array([0, 1, 1, 0])
  1. 创建逻辑回归模型
model = LogisticRegression()
  1. 拟合模型
model.fit(X, y)
  1. 预测
# 预测新数据
new_X = np.array([[9, 10]])
y_pred = model.predict(new_X)

5.3 PCA(主成分分析)

5.3.1 算法原理

PCA是一种用于降维的无监督学习算法。其目的是找到数据中方差最大的方向,并将其投影到这些方向上,从而减少数据的维度。

5.3.2 NumPy实现

使用NumPy实现PCA的步骤如下:

  1. 导入NumPy和必要的模块
import numpy as np
from sklearn.decomposition import PCA
  1. 准备数据
# 创建数据
data = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
  1. 创建PCA模型
pca = PCA(n_components=2)
  1. 拟合模型
pca.fit(data)
  1. 降维
# 将数据投影到前两个主成分上
data_reduced = pca.transform(data)

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:NumPy是Python科学计算的基石,本文将深入探讨如何使用NumPy实现机器学习中的KMeans聚类算法。KMeans是一种无监督学习方法,用于将数据自动分组,无需预先标签信息。我们将逐步讲解KMeans算法的原理和NumPy实现,包括初始化质心、分配样本、更新质心和判断收敛。此外,我们还将提供优化策略和NumPy在机器学习中的其他应用。通过掌握NumPy实现KMeans,读者将提升数据分析和机器学习能力。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值