n维空间的欧氏距离公式_什么是“欧几里得距离”(ED)?| 群体遗传专题

本文介绍了欧几里得距离(Euclidean distance, ED)的概念,及其在BSA(bulk segregant analysis)中的作用。通过在n维空间中计算两点间的距离,ED用于量化遗传差异,帮助定位控制性状的QTL。滑窗计算法用于排除统计异常值,保留真正的QTL信号。BSA分析中,ED不仅受到抽样偏差影响,还可能经过乘方处理以降噪。欧几里得距离在遗传学和其他领域有广泛应用。" 78100487,7242986,理解模型预测:LIME技术详解,"['机器学习', '模型解释', '数据科学', '自然语言处理', '计算机视觉']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

9105c6d818edc5cfffe12336849e698e.png在BSA(bulk segregant analysis)的结题报告中,我们经常看到欧几里得距离(Euclidean distance,ED,又称欧氏距离)算法的结果。欧几里得这位大数学家的名字我们都不算陌生,但是欧几里得距离是什么,它又是怎样应用到遗传学研究的领域当中来的呢?

要理解欧几里得距离,我们先要了解欧几里得空间。我们通常所在的空间是三维空间,三维空间任意的点可以被一个三维的坐标定义。而将三维拓展为更高的n维,即得到了n维欧几里得空间。而在n维空间中两个点之间的距离,我们就称之为欧几里得距离。

在具体的应用中,如果一组数据拥有n个相互独立的变量,我们就可以将其置于n维的欧几里得空间中,并应用欧几里得距离来量化两组数据之间的差异。我们都知道,在二维平面上,两点之间的距离计算如下:

1fce77f6b7976ba59a6016e142ac6f1f.png

那么应用到n维空间中,欧几里得距离的计算也同理,是坐标轴各方向差值的平方和开根号,计算如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值