记得小编在高二学习圆锥曲线的时候,较大的计算量让我每次的考试时间都非常的紧
于是小编又用了一节晚自习的时间推出了这套圆锥曲线的联解公式
不多说直接进入正题

好了,公式是有了,但是这么长怎么来记住它呢?
首先,理解至上
我们可以观察到联解得到的方程中只有一次项系数中k和C不是平方,其余的二次项系数和常数项都是有平方的;然后再来观察符号,只有常数项中的b平方前面有负号;再来看看每一项,二次项系数呢没有C,一次想想系数没有b,常数项没有k。所以你只需要记住C,b,k和常数项负b平方。(记:常项负 B C B k)
好,接下来是记判别式。先来观察整体,字母都是由平方的,再是括号里面,a,b,C,k都有,只有C是负的;再来看括号外面(2ab)的平方。(记:都有负C 2 a b)
好,上口诀
口诀
椭圆直线联立解
常项负 B C B k
都有负 C 2 a b
最后平方定要记
好,椭圆解决了,接下来是双曲线

所以将原来的椭圆联解公式里的改为就得到了双曲线的联解公式。
在这里我们就减小负担,由于抛物线的联解非常的简单,在这就不再做一一总结了。
当直线的方程为时,我们只需将原来的椭圆联解公式里面所有的a换成b,b换成a,k换成m,最后把x换成y即可。
双曲线也是同样的道理。