圆锥曲线万能弦长公式_圆锥曲线的焦点弦长公式

摘要:本文将以抛物线弦长的几种求法来阐述圆锥曲线的弦长通用求法,并从中感受解析几何创立的必要性,感受不同坐标系作为工具的不同特点及其优缺点。

首先给出一个求解问题。

已知抛物线的焦准距为p(焦准距即焦点到准线的距离),过其焦点F的弦AB与其对称轴的夹角为α,求弦长|AB|。

对这个问题,一般都是通过解析几何来解决,不过在解析几何建立之前,这个问题也是可以解决的,我们现在就来看看。

如上图所示,直线

为抛物线的准线,O为抛物线的顶点,F为为焦点,AB为过焦点F的弦,α为其与对称轴x的夹角,E为准线与对称轴的交点。作

于D点,作

与C点,由抛物线的第二定义可知:

,这里我们规定α为锐角,即

,过F点作

的平行线,交AD与G点,交BC的延长线于H点,过B点作

根据图上的几何关系,则有:

由于

,(已知条件)

于是在直角

与直角三角形

中有:

结合

于是有:

……(记为抛物线焦半径和式)

在直角

中,由勾股定理得:

,而

即:

于是可得:

代入抛物线焦半径和式中,化简,可得:

,即:

这就是抛物线焦点弦长公式。

我们可以看到,使用纯几何的办法来求解抛物线的弦长是十分麻烦的,所以解析几何的创立才有了它的必要性,下面就来看看解析几何的办法。

如上图所示,以抛物线顶点为O点,对称轴为x轴,建立直角坐标系xOy,于是抛物线的方程为

,其焦点坐标为

,由于AB与x轴的夹角为α,所以直线AB的斜率为

,其方程则由点斜式确定为

联立抛物线与直线AB的方程:

消去y得:

由韦达定理:

于是

在这里,我们利用了三角函数公式

上面是课本里的通常做法,我们可以对其做一下简化。

由抛物线的定义,抛物线上的点到准线的距离和到焦点距离相等可以得到准线为:

,于是

,于是

,由上面的解法知道

,于是立即可得

事实上,我们可以利用韦达定理改造一下弦长公式,即

这样,我们只需要联立抛物线和直线方程得到一元二次方程即可,不需要用韦达定理了。

除了直线方程的点斜式,利用直线的参数方程更为简单。

直线AB的参数方程为:

,代入到抛物线方程中,可得:

于是

显然比前面的方法减少了不少计算量。

不过,极坐标的方法最为简单。

由抛物线的极坐标标准方程

于是

极坐标的方法不仅可以直接得到抛物线的焦点弦长,对椭圆和双曲线一样适用,由圆锥曲线的统一极坐标方程

,e为离心率,椭圆

,抛物线

,双曲线

,于是圆锥曲线的焦点弦长公式为:

注:当椭圆与双曲线以标准方程表示时,焦准距

,离心率

,此时圆锥曲线的焦点弦长公式为:

总结:从几何法到极坐标法,每种方法越来越简单,这很有启发意义,如果我们能够创造出越来越好的工具,那么解决问题的方式就会变得越来越方便,于是当我们在解决其它问题的时候也可以仿照这种思路创造更好的工具,寻求更好的办法,从而推动技术的进步。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值