cnn 一维时序数据_AI顶会解读|时序动作分割与检测,附代码链接

本文介绍了腾讯AI Lab在时序动作分割与检测领域的三项研究成果,包括动作识别的时序帧间差异表征学习、边界感知级联网络和移动中心点检测器。这些方法通过创新的网络结构和损失函数,提升了动作检测的准确性和效率,相关代码已开源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时序动作分割与检测

时序动作的分割与检测是视频计算机视觉技术的一大常规任务,对自动驾驶和机器人等应用至关重要,下面 3 篇论文是腾讯 AI Lab 在这一方向的探索成果。

1.  动作识别中的时序帧间差异表征学习

Temporal Distinct Representation Learning for Action Recognition

本文由腾讯 AI Lab、腾讯优图实验室、新加坡南洋理工大学、美国纽约州立大学布法罗分校合作完成,提出了一种用于动作识别的时序帧间差异表征学习方法。

二维卷积神经网络(2D CNN)已成功运用到了图像识别中,研究人员开始尝试使用2D CNN提取视频数据的表征。然而在使用2D CNN对视频数据进行特征提取的过程,视频的不同帧需要共享2D CNN的卷积核,这将导致不同帧间重复冗余信息的提取,特别是不同帧共有的场景信息,因此忽略了帧间变化信息的提取。

本文针对此问题提出了两种方法,1)设计了一种序列式的通道筛选机制,即渐进式增强模块(Progressive Enhancement Module, PEM),对具有判别力的通道进行激励,并避免重复信息的提取;2)设计了时序多样性损失函数(Temporal Diversity Loss, TD Loss),对网络的卷积核进行矫正,从而使网络关注帧间变化信息而不是帧间相似的场景信息。常规数据库上的实验验证了本文方法的有效性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值