欧氏空间距离和内积_内积空间与Hilbert空间

内积空间是一种特殊的赋范空间,从泛函分析发展的历史上看,人们首先注意到的是内积空间而不是赋范空间。

内积空间特别是

空间(完备的内积空间)是对维欧氏空间最自然的“推广”,推广到无穷维空间(存在收敛性问题)。他们具有与欧氏空间十分相近的性质。

空间迄今为止仍然是应用最广泛的一类空间。

在内积空间和

空间中使用的“几何”概念和术语,与欧几里得几何中的语言相似,它是由E.Schimidt在1908年引入的。

内积空间的基本性质

内积空间的定义

中可以定义距离、范数、内积这些概念,设

,其内积定义为:

于是我们有:

定义1:

是数域

上的线性空间,如果对于任意

,有

中的一个数

与它们对应,使得对任意的

,满足:

当且仅当

(正定性);

(共轭对称性);

则称

上的一个内积,定义了内积的线性空间

称为内积空间。

注1:

是一个二元函数,对于每一个固定的

上的一个线性函数(线性泛函)。(因为满足3. 4. 两条)

由内积生成的范数

在内积空间中,希望定义元素的范数

,且

定理4:(Schwarz不等式)

是内积空间,对于

定理6:每个内积空间

按范数

成为一个赋范空间。

注:内积空间中定义了范数,由范数又可以定义距离,这样就有了收敛性等距离空间中所具有的性质。

不等式可以写成:

不等式我们还可以得到:

定理7:设

是内积空间,则内积

是关于

的连续函数,即当

时(

是点列)

内积和由其生成范数之间的关系

平行四边形法则:平行四边形对角线平方和等于其四条边平方和

特别地,在有了正交性的概念以后,平行四边形法则也成为了勾股定理。

注:由内积可定义一个范数

内积空间必定是一个

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值